Mostrar el registro sencillo del ítem
Bibliometric analysis of the thermal storage systems research in the last ten years
dc.contributor.author | Peralta-Ruiz, Yeimmy | |
dc.contributor.author | Acevedo Peñaloza, Carlos Humberto | |
dc.contributor.author | Valencia Ochoa, Guillermo | |
dc.date.accessioned | 2021-12-11T20:50:17Z | |
dc.date.available | 2021-12-11T20:50:17Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0974-4290 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/6376 | |
dc.description.abstract | In this research we analyze the state of the art of the technological developments that are being presented by the scientific community to mitigate the strong environmental changes with renewable energies. The results obtained by the bibliometric techniques in the period 2007-2018 show that in the 1900 published articles the People's Republic of China presents the highest volume of 32.3% of the total publications, showing a strong influence on the development of energy storage technologies and the availability of materials. The results presented in this article allow us to evaluate the development of researchers in this alternative of energy storage as a replacement to the distribution that is done with traditional methods. | eng |
dc.format.extent | 06 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | International Journal of ChemTech Research | spa |
dc.relation.ispartof | International Journal of ChemTech Research | |
dc.rights | All Privacy & Copyrights reserved with Sai Scientific Communications. | eng |
dc.source | https://sphinxsai.com/2018/ch_vol11_no9/ch02.htm | spa |
dc.title | Bibliometric analysis of the thermal storage systems research in the last ten years | eng |
dc.type | Artículo de revista | spa |
dcterms.references | R. Hirmiz, M. F. Lightstone, and J. S. Cotton, “Performance enhancement of solar absorption cooling systems using thermal energy storage with phase change materials,” Appl. Energy, vol. 223, no. April, pp. 11–29, 2018. | spa |
dcterms.references | A. F. Regin, S. C. Solanki, and J. S. Saini, “Heat transfer characteristics of thermal energy storage system using PCM capsules: A review,” Renew. Sustain. Energy Rev., vol. 12, no. 9, pp. 2438–2458, Dec. 2008. | spa |
dcterms.references | Y. Wang, Y. Wang, H. Li, J. Zhou, and K. Cen, “Thermal properties and friction behaviors of slag as energy storage material in concentrate solar power plants,” Sol. Energy Mater. Sol. Cells, vol. 182, no. March, pp. 21–29, 2018. | spa |
dcterms.references | J. E. Rea et al., “Performance modeling and techno-economic analysis of a modular concentrated solar power tower with latent heat storage,” Appl. Energy, vol. 217, no. January, pp. 143–152, 2018. | spa |
dcterms.references | K. J. Albrecht, G. S. Jackson, and R. J. Braun, “Evaluating thermodynamic performance limits of thermochemical energy storage subsystems using reactive perovskite oxide particles for concentrating solar power,” Sol. Energy, vol. 167, no. March, pp. 179–193, 2018. | spa |
dcterms.references | P. Denholm and M. Hand, “Grid flexibility and storage required to achieve very high penetration of variable renewable electricity,” Energy Policy, vol. 39, no. 3, pp. 1817–1830, Mar. 2011. | spa |
dcterms.references | P. Denholm and M. Mehos, “The Role of Concentrating Solar Power in Integrating Solar and Wind Energy,” 4th Sol. Integr. Work. Berlin, Ger., no. November, pp. 6–11, 2014. | spa |
dcterms.references | IRENA, “Renewable Energy Technologies Cost Analysis Series: Concentrating Solar Power,” Compr. Renew. Energy, vol. 3, no. 2, pp. 595–636, 2012. | spa |
dcterms.references | U. Herrmann, B. Kelly, and H. Price, “Two-tank molten salt storage for parabolic trough solar power plants,” Energy, vol. 29, no. 5–6, pp. 883–893, Apr. 2004. | spa |
dcterms.references | U. Herrmann and D. W. Kearney, “Survey of Thermal Energy Storage for Parabolic Trough Power Plants,” J. Sol. Energy Eng., vol. 124, no. 2, pp. 145–152, Apr. 2002. | spa |
dcterms.references | J. E. Pacheco, “Solar TWO Test and Evaluations Program,” Sandia, 1995. | spa |
dcterms.references | Y. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Appl. Energy, vol. 104, pp. 538–553, 2013. | spa |
dcterms.references | J. Pacio and T. Wetzel, “Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems,” Sol. Energy, vol. 93, pp. 11–22, 2013. | spa |
dcterms.references | N. I. Ibrahim, F. A. Al-Sulaiman, and F. N. Ani, “Solar absorption systems with integrated absorption energy storage–A review,” Renew. Sustain. Energy Rev., vol. 82, no. November 2016, pp. 1602–1610, 2018. | spa |
dcterms.references | F. DeWinter, Solar collectors, energy storage, and materials. MIT Press, 1990. | spa |
dcterms.references | B. Zalba, J. M. Mar n, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications,” Appl. Therm. Eng., vol. 23, no. 3, pp. 251– 283, Feb. 2003. | spa |
dcterms.references | A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renew. Sustain. Energy Rev., vol. 13, no. 2, pp. 318–345, Feb. 2009. | spa |
dcterms.references | A. Henry and R. Prasher, “The prospect of high temperature solid state energy conversion to reduce the cost of concentrated solar power,” Energy Environ. Sci., vol. 7, no. 6, pp. 1819–1828, May 2014. | spa |
dcterms.references | L. F. Aguas, Y. C. Escorcia, and G. V. Ochoa, “Bibliometric Analysis of Recent Literature on Energy Generation Under Rankine Cycle,” vol. 11, no. 03, pp. 374–382, 2018. | spa |
dcterms.references | I. S. Yulineth Cardenas, Guillermo Valencia, “Análisis cienciométrico de la investigación de sistemas fotovoltaicos integrados a edificios desde el año 2000 a 2017,” Rev. Espac., vol. 38 (No 47), pp. 1–12, 2017. | spa |
dcterms.references | A. Sharma et al., Renewable & sustainable energy reviews., vol. 13, no. 2. Elsevier Science, 1997. | spa |
dc.publisher.place | India | spa |
dc.relation.citationedition | Vol.11 No.9.(2018) | spa |
dc.relation.citationendpage | 215 | spa |
dc.relation.citationissue | 9(2018) | spa |
dc.relation.citationstartpage | 210 | spa |
dc.relation.citationvolume | 11 | spa |
dc.relation.cites | Guillermo Valencia Ochoa et al /International Journal of ChemTech Research, 2018,11(09): 210-215. 215 | |
dc.relation.ispartofjournal | International Journal of ChemTech Research | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Thermal energy storage | eng |
dc.subject.proposal | bibliometric analysis | eng |
dc.subject.proposal | energy technology | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |