Mostrar el registro sencillo del ítem

dc.contributor.authorPeralta-Ruiz, Yeimmy
dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.contributor.authorValencia Ochoa, Guillermo
dc.date.accessioned2021-12-11T20:50:17Z
dc.date.available2021-12-11T20:50:17Z
dc.date.issued2018
dc.identifier.issn0974-4290
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/6376
dc.description.abstractIn this research we analyze the state of the art of the technological developments that are being presented by the scientific community to mitigate the strong environmental changes with renewable energies. The results obtained by the bibliometric techniques in the period 2007-2018 show that in the 1900 published articles the People's Republic of China presents the highest volume of 32.3% of the total publications, showing a strong influence on the development of energy storage technologies and the availability of materials. The results presented in this article allow us to evaluate the development of researchers in this alternative of energy storage as a replacement to the distribution that is done with traditional methods.eng
dc.format.extent06 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Journal of ChemTech Researchspa
dc.relation.ispartofInternational Journal of ChemTech Research
dc.rightsAll Privacy & Copyrights reserved with Sai Scientific Communications.eng
dc.sourcehttps://sphinxsai.com/2018/ch_vol11_no9/ch02.htmspa
dc.titleBibliometric analysis of the thermal storage systems research in the last ten yearseng
dc.typeArtículo de revistaspa
dcterms.referencesR. Hirmiz, M. F. Lightstone, and J. S. Cotton, “Performance enhancement of solar absorption cooling systems using thermal energy storage with phase change materials,” Appl. Energy, vol. 223, no. April, pp. 11–29, 2018.spa
dcterms.referencesA. F. Regin, S. C. Solanki, and J. S. Saini, “Heat transfer characteristics of thermal energy storage system using PCM capsules: A review,” Renew. Sustain. Energy Rev., vol. 12, no. 9, pp. 2438–2458, Dec. 2008.spa
dcterms.referencesY. Wang, Y. Wang, H. Li, J. Zhou, and K. Cen, “Thermal properties and friction behaviors of slag as energy storage material in concentrate solar power plants,” Sol. Energy Mater. Sol. Cells, vol. 182, no. March, pp. 21–29, 2018.spa
dcterms.referencesJ. E. Rea et al., “Performance modeling and techno-economic analysis of a modular concentrated solar power tower with latent heat storage,” Appl. Energy, vol. 217, no. January, pp. 143–152, 2018.spa
dcterms.referencesK. J. Albrecht, G. S. Jackson, and R. J. Braun, “Evaluating thermodynamic performance limits of thermochemical energy storage subsystems using reactive perovskite oxide particles for concentrating solar power,” Sol. Energy, vol. 167, no. March, pp. 179–193, 2018.spa
dcterms.referencesP. Denholm and M. Hand, “Grid flexibility and storage required to achieve very high penetration of variable renewable electricity,” Energy Policy, vol. 39, no. 3, pp. 1817–1830, Mar. 2011.spa
dcterms.referencesP. Denholm and M. Mehos, “The Role of Concentrating Solar Power in Integrating Solar and Wind Energy,” 4th Sol. Integr. Work. Berlin, Ger., no. November, pp. 6–11, 2014.spa
dcterms.referencesIRENA, “Renewable Energy Technologies Cost Analysis Series: Concentrating Solar Power,” Compr. Renew. Energy, vol. 3, no. 2, pp. 595–636, 2012.spa
dcterms.referencesU. Herrmann, B. Kelly, and H. Price, “Two-tank molten salt storage for parabolic trough solar power plants,” Energy, vol. 29, no. 5–6, pp. 883–893, Apr. 2004.spa
dcterms.referencesU. Herrmann and D. W. Kearney, “Survey of Thermal Energy Storage for Parabolic Trough Power Plants,” J. Sol. Energy Eng., vol. 124, no. 2, pp. 145–152, Apr. 2002.spa
dcterms.referencesJ. E. Pacheco, “Solar TWO Test and Evaluations Program,” Sandia, 1995.spa
dcterms.referencesY. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Appl. Energy, vol. 104, pp. 538–553, 2013.spa
dcterms.referencesJ. Pacio and T. Wetzel, “Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems,” Sol. Energy, vol. 93, pp. 11–22, 2013.spa
dcterms.referencesN. I. Ibrahim, F. A. Al-Sulaiman, and F. N. Ani, “Solar absorption systems with integrated absorption energy storage–A review,” Renew. Sustain. Energy Rev., vol. 82, no. November 2016, pp. 1602–1610, 2018.spa
dcterms.referencesF. DeWinter, Solar collectors, energy storage, and materials. MIT Press, 1990.spa
dcterms.referencesB. Zalba, J. M. Mar n, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications,” Appl. Therm. Eng., vol. 23, no. 3, pp. 251– 283, Feb. 2003.spa
dcterms.referencesA. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renew. Sustain. Energy Rev., vol. 13, no. 2, pp. 318–345, Feb. 2009.spa
dcterms.referencesA. Henry and R. Prasher, “The prospect of high temperature solid state energy conversion to reduce the cost of concentrated solar power,” Energy Environ. Sci., vol. 7, no. 6, pp. 1819–1828, May 2014.spa
dcterms.referencesL. F. Aguas, Y. C. Escorcia, and G. V. Ochoa, “Bibliometric Analysis of Recent Literature on Energy Generation Under Rankine Cycle,” vol. 11, no. 03, pp. 374–382, 2018.spa
dcterms.referencesI. S. Yulineth Cardenas, Guillermo Valencia, “Análisis cienciométrico de la investigación de sistemas fotovoltaicos integrados a edificios desde el año 2000 a 2017,” Rev. Espac., vol. 38 (No 47), pp. 1–12, 2017.spa
dcterms.referencesA. Sharma et al., Renewable & sustainable energy reviews., vol. 13, no. 2. Elsevier Science, 1997.spa
dc.publisher.placeIndiaspa
dc.relation.citationeditionVol.11 No.9.(2018)spa
dc.relation.citationendpage215spa
dc.relation.citationissue9(2018)spa
dc.relation.citationstartpage210spa
dc.relation.citationvolume11spa
dc.relation.citesGuillermo Valencia Ochoa et al /International Journal of ChemTech Research, 2018,11(09): 210-215. 215
dc.relation.ispartofjournalInternational Journal of ChemTech Researchspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalThermal energy storageeng
dc.subject.proposalbibliometric analysiseng
dc.subject.proposalenergy technologyeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem