Mostrar el registro sencillo del ítem

dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.contributor.authorValencia, Guillermo
dc.contributor.authorCardenas Escorcia, Yulineth
dc.contributor.authorQuiñones, Diego H.
dc.contributor.authorCamargo Vanegas, Josué
dc.date.accessioned2021-11-02T22:02:21Z
dc.date.available2021-11-02T22:02:21Z
dc.date.issued2018-01
dc.identifier.issn0973-4562
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/609
dc.description.abstractA scientometric analysis of the production of scientific publications on emissions control from 2007 to 2017 was carried out. HistCite was used to analyze information collected from Web of Science (WoS) on this topic during this period. The results suggest that scientific publications in this field have steadily increased over the years during the last decade. China is the country with the highest number of publications, and the Chinese Academy of Sciences represents the institution with the highest number of publications. Most of the papers and citations came from developed countries. The top three journals with highest number of papers in this field are Applied Physics Letter, Atmospheric Environment, and Environmental Science & Technology.eng
dc.format.extent07 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Journal of Applied Engineering Researchspa
dc.relation.ispartofInternational Journal of Applied Engineering Research
dc.rights© Research India Publications.eng
dc.sourcehttp://www.ripublication.com/Volume/ijaerv13n14.htmspa
dc.titleScientometric analysis of research on emissions control from 2007 to 2017eng
dc.typeArtículo de revistaspa
dcterms.referencesJ. D. Stowell, Y. Kim, Y. Gao, J. S. Fu, H. H. Chang, and Y. Liu, “The impact of climate change and emissions control on future ozone levels: Implications for human health,” Environ. Int., vol. 108, pp. 41–50, Nov. 2017.spa
dcterms.referencesM. Li and Q. Wang, “Will technology advances alleviate climate change? Dual effects of technology change on aggregate carbon dioxide emissions,” Energy Sustain. Dev., vol. 41, pp. 61–68, Dec. 2017.spa
dcterms.referencesL. Chen, T. L. Yip, and J. Mou, “Provision of Emission Control Area and the impact on shipping route choice and ship emissions,” Transp. Res. Part D Transp. Environ., Jul. 2017.spa
dcterms.referencesR. A. O. Nunes, M. C. M. Alvim-Ferraz, F. G. Martins, and S. I. V. Sousa, “Assessment of shipping emissions on four ports of Portugal,” Environ. Pollut., vol. 231, pp. 1370–1379, Dec. 2017.spa
dcterms.referencesB. Bui and C. de Villiers, “Carbon emissions management control systems: Field study evidence,” J. Clean. Prod., vol. 166, pp. 1283–1294, Nov. 2017.spa
dcterms.referencesI. Santín, M. Barbu, C. Pedret, and R. Vilanova, “Control strategies for nitrous oxide emissions reduction on wastewater treatment plants operation,” Water Res., vol. 125, pp. 466–477, Nov. 2017.spa
dcterms.referencesA. Kumar and K. A. Subramanian, “Control of greenhouse gas emissions (CO2, CH4 and N2O) of a biodiesel (B100) fueled automotive diesel engine using increased compression ratio,” Appl. Therm. Eng., vol. 127, pp. 95–105, Dec. 2017.spa
dcterms.referencesK. L. Hwang, S. M. Choi, M. K. Kim, J. B. Heo, and K. D. Zoh, “Emission of greenhouse gases from waste incineration in Korea,” J. Environ. Manage., vol. 196, pp. 710–718, Jul. 2017.spa
dcterms.referencesF. Cucchiella, M. Gastaldi, and M. Miliacca, “The management of greenhouse gas emissions and its effects on firm performance,” J. Clean. Prod., vol. 167, pp. 1387–1400, Nov. 2018.spa
dcterms.referencesM. Ö. Arıoğlu Akan, D. G. Dhavale, and J. Sarkis, “Greenhouse gas emissions in the construction industry: an analysis and evaluation of a concrete supply chain,” J. Clean. Prod., vol. 167, pp. 1195– 1207, Nov. 2017.spa
dcterms.referencesK. Nakano et al., “Greenhouse gas emissions from round wood production in Japan,” J. Clean. Prod., vol. 170, pp. 1654–1664, Jan. 2016.spa
dcterms.referencesY. Geng et al., “A bibliometric review: Energy consumption and greenhouse gas emissions in the residential sector,” J. Clean. Prod., vol. 159, pp. 301– 316, Aug. 2017.spa
dcterms.referencesT. Feng, Y. Yang, S. Xie, J. Dong, and L. Ding, “Economic drivers of greenhouse gas emissions in China,” Renew. Sustain. Energy Rev., vol. 78, pp. 996– 1006, Oct. 2017.spa
dcterms.referencesY. N. Skiba and D. Parra-Guevara, “Control of emission rates,” Atmosfera, vol. 26, no. 3, pp. 379–400, Jul. 2013.spa
dcterms.referencesA. Lloyd Spetz et al., “Chemical sensor systems for emission control from combustions,” Sensors Actuators, B Chem., vol. 187, pp. 184–190, Oct. 2013.spa
dcterms.referencesD. Carder, R. Ryskamp, M. Besch, and A. Thiruvengadam, “Emissions Control Challenges for Compression Ignition Engines,” Procedia IUTAM, vol. 20, pp. 103–111, Jan. 2017.spa
dcterms.referencesS. Zhang, Y. Wu, B. Zhao, X. Wu, J. Shu, and J. Hao, “City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China’s Yangtze River Delta region,” J. Environ. Sci. (China), vol. 51, pp. 75–87, Jan. 2017.spa
dcterms.referencesF. Di Natale and C. Carotenuto, “Particulate matter in marine diesel engines exhausts: Emissions and control strategies,” Transp. Res. Part D Transp. Environ., vol. 40, pp. 166–191, Oct. 2015.spa
dcterms.referencesK. Huang, X. Zhang, and Y. Lin, “The ‘APEC Blue’ phenomenon: Regional emission control effects observed from space,” Atmos. Res., vol. 164–165, pp. 65–75, Oct. 2015.spa
dcterms.referencesR. Li, H. Mao, L. Wu, J. He, P. Ren, and X. Li, “The evaluation of emission control to PM concentration during Beijing APEC in 2014,” Atmos. Pollut. Res., vol. 7, no. 2, pp. 363–369, Mar. 2016.spa
dcterms.referencesC. Zhu et al., “Potentials of whole process control of heavy metals emissions from coal-fired power plants in China,” J. Clean. Prod., vol. 114, pp. 343–351, Feb. 2016.spa
dcterms.referencesQ. M. Liang, H. M. Deng, and M. Liu, “Co-control of CO2emissions and local pollutants in China: The perspective of adjusting final use behaviors,” J. Clean. Prod., vol. 131, pp. 198–208, Sep. 2016.spa
dcterms.referencesS. Wang et al., “Using modified fly ash for mercury emissions control for coal-fired power plant applications in China,” Fuel, vol. 181, pp. 1230–1237, Oct. 2016.spa
dcterms.referencesF. Feijoo and T. K. Das, “Emissions control via carbon policies and microgrid generation: A bilevel model and Pareto analysis,” Energy, vol. 90, pp. 1545–1555, Oct. 2015.spa
dcterms.referencesJ. Jiang and D. Li, “Theoretical analysis and experimental confirmation of exhaust temperature control for diesel vehicle NOx emissions reduction,” Appl. Energy, vol. 174, pp. 232–244, Jul. 2016.spa
dcterms.referencesA. Varna, A. C. Spiteri, Y. M. Wright, P. Dimopoulos Eggenschwiler, and K. Boulouchos, “Experimental and numerical assessment of impingement and mixing of urea-water sprays for nitric oxide reduction in diesel exhaust,” Appl. Energy, vol. 157, pp. 824–837, Nov. 2015.spa
dcterms.referencesC. Guardiola, J. Martín, B. Pla, and P. Bares, “Cycle by cycle NOx model for diesel engine control,” Appl. Therm. Eng., vol. 110, pp. 1–2, Jan. 2017.spa
dcterms.referencesIIPC, “Tendencias de las emisiones de gases de efecto invernadero,” Informe del Grupo de Trabajo III - Mitigación del Cambio Climático, 2007.spa
dcterms.referencesLi JH, “Control of spontaneous emission spectra via an external coherent magnetic field in a cycleconfiguration atomic médium,” Eur. Phys. J. D, vol. 43, no. 43, pp. 467–473, 2007.spa
dcterms.referencesY. X. Li JH, Chen AX, Liu JB, “Control of spontaneous emission spectra and simulation of multiple spontaneously generated coherence in a four-level atomic system,” Opt. Commun., vol. 278, no. 1, pp. 124–131, 2007.spa
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.13 No.14.(2018)spa
dc.relation.citationendpage11647spa
dc.relation.citationissue14(2018)spa
dc.relation.citationstartpage11641spa
dc.relation.citationvolume13spa
dc.relation.citesValencia, G. E., Camargo, J. M., Cárdenas, Y. D., Peñaloza, C. A., & Quiñones, D. H. (2018). Scientometric Analysis of Research on Emissions Control from 2007 to 2017. International Journal of Applied Engineering Research, 13(14), 11641-11647.
dc.relation.ispartofjournalInternational Journal of Applied Engineering Researchspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalBibliometricseng
dc.subject.proposalemission controleng
dc.subject.proposalvisualization of analysiseng
dc.subject.proposalresearch resultseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem