dc.contributor.author | Acevedo Peñaloza, Carlos Humberto | |
dc.contributor.author | Valencia, Guillermo | |
dc.contributor.author | Coba Salcedo, Milton Fabian | |
dc.date.accessioned | 2021-11-02T19:10:52Z | |
dc.date.available | 2021-11-02T19:10:52Z | |
dc.date.issued | 2018-06-18 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/603 | |
dc.description.abstract | In the present study, the incidence of the variation in feed rate per tooth and depth
of cut for SAE 4340 alloy steel and SAE J431 steel castings was analysed and in
which material this variation is most noticeable. For this purpose, the machining
process studied was milling. This is a machining operation in which a workpiece
is passed in front of a rotating cylindrical tool with multiple cutting edges. For this
study, the feed rate per tooth and depth of cut were varied by 4 values each. The
feed rate ranged from 0.002 mm to 0.008 mm and the depth of 2 mm to 8 mm
found that for both parameter variations cutting speeds always decrease with
increasing both feed per tooth and depth of cut and that feed per tooth and depth
of cut significantly affect process costs. | eng |
dc.format.extent | 08 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Contemporary Engineering Sciences | spa |
dc.relation.ispartof | Contemporary Engineering Sciences | |
dc.rights | © 2018 Milton F. Coba Salcedo, Carlos Acevedo Penaloza and Guillermo Valencia Ochoa. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | eng |
dc.source | http://www.m-hikari.com/ces/ces2018/ces41-44-2018/85233.html | spa |
dc.title | A comparative study of the cutting parameter in milling process under different material | eng |
dc.type | Artículo de revista | spa |
dcterms.references | A. Weremczuk, R. Rusinek and J. Warminski, The Concept of Active Elimination of Vibrations in Milling Process, Procedia CIRP, 31 (2015), 82–87. https://doi.org/10.1016/j.procir.2015.03.036 | spa |
dcterms.references | X. Long, H. Jiang and G. Meng, Active vibration control for peripheral milling processes, J. Mater. Process. Technol., 213 (2013), no. 5, 660–670. https://doi.org/10.1016/j.jmatprotec.2012.11.025 | spa |
dcterms.references | M. Wan, J. Feng, Y.-C. Ma and W.-H. Zhang, Identification of milling process damping using operational modal analysis, Int. J. Mach. Tools Manuf., 122 (2017), 120–131. https://doi.org/10.1016/j.ijmachtools.2017.06.006 | spa |
dcterms.references | Q. Guo, B. Zhao, Y. Jiang and W. Zhao, Cutting force modeling for nonuniform helix tools based on compensated chip thickness in five-axis flank milling process, Precis. Eng., 51 (2018), 659–681. https://doi.org/10.1016/j.precisioneng.2017.11.009 | spa |
dcterms.references | A. Pleta, F. A. Niaki and L. Mears, Investigation of Chip Thickness and Force Modelling of Trochoidal Milling, Procedia Manuf., 10 (2017), 612– 621. https://doi.org/10.1016/j.promfg.2017.07.063 | spa |
dcterms.references | C. Liu, L. Zhu and C. Ni, Chatter detection in milling process based on VMD and energy entropy, Mech. Syst. Signal Process., 105 (2018), 169– 182. https://doi.org/10.1016/j.ymssp.2017.11.046 | spa |
dcterms.references | A. Afkhamifar, D. Antonelli and P. Chiabert, Variational Analysis for CNC Milling Process, Procedia CIRP, 43 (2016), 118–123. https://doi.org/10.1016/j.procir.2016.02.164 | spa |
dcterms.references | R. Wiedenmann and M. F. Zaeh, Laser-assisted milling-Process modeling and experimental validation, CIRP J. Manuf. Sci. Technol., 8 (2015), 70–77. https://doi.org/10.1016/j.cirpj.2014.08.003 | spa |
dcterms.references | U. Karagüzel, E. Uysal, E. Budak and M. Bakkal, Analytical modeling of turn-milling process geometry, kinematics and mechanics, Int. J. Mach. Tools Manuf., 91 (2015), 24–33. https://doi.org/10.1016/j.ijmachtools.2014.11.014 | spa |
dcterms.references | M. Hadad and M. Ramezani, Modeling and analysis of a novel approach in machining and structuring of flat surfaces using face milling process, Int. J. Mach. Tools Manuf., 105 (2016), 32–44. https://doi.org/10.1016/j.ijmachtools.2016.03.005 | spa |
dcterms.references | M. Groover, Fundamentos De Manufactura Moderna, Mc Graw Hi. Mc Graw Hill, 2017. | spa |
dc.identifier.doi | https://doi.org/10.12988/ces.2018.85233 | |
dc.publisher.place | Bulgaria | spa |
dc.relation.citationedition | Vol.11 No.44.(2018) | spa |
dc.relation.citationendpage | 2218 | spa |
dc.relation.citationissue | 44(2018) | spa |
dc.relation.citationstartpage | 2211 | spa |
dc.relation.citationvolume | 11 | spa |
dc.relation.cites | Coba-Salcedo, Milton & Penaloza, Carlos & Valencia, Guillermo. (2018). A comparative study of the cutting parameter in milling process under different material. Contemporary Engineering Sciences. 11. 2211-2218. 10.12988/ces.2018.85233. | |
dc.relation.ispartofjournal | Contemporary Engineering Sciences | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | depth of cut | eng |
dc.subject.proposal | feed rate | eng |
dc.subject.proposal | milling process | eng |
dc.subject.proposal | cutting parameter | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |