Mostrar el registro sencillo del ítem

dc.contributor.authorZucato Toledo, Mateus
dc.contributor.authorBaez, Giovanni
dc.contributor.authorGarcia Guerra, Alvaro
dc.contributor.authorLOBOS, NELSON
dc.contributor.authorGuenther, Jerry
dc.contributor.authorTrevisol, Eduardo
dc.contributor.authorLuchini, Daniel
dc.contributor.authorShaver, Randy
dc.contributor.authorWiltbank, Milo
dc.date.accessioned2021-11-02T16:10:39Z
dc.date.available2021-11-02T16:10:39Z
dc.date.issued2017-12-20
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/599
dc.description.abstractThe objectives of this study were to evaluate the effects of daily top-dressing (individually feeding on the top of the total mixed ration) with rumen-protected methionine (RPM) from 30 ± 3 until 126 ± 3 Days in milk on productive and reproductive performance in lactating dairy cows. A total of 309 lactating dairy Holstein cows (138 primiparous and 171 multiparous) were randomly assigned to treatment diets containing either RPM (21.2 g of RPM + 38.8 g of dried distillers grain; 2.34% Methionine [Met] of metabolizable protein [MP]) or Control (CON; 60 g of dried distillers grain; 1.87% Met of MP). Plasma amino acids were evaluated at the time of artificial insemination (AI) and near pregnancy diagnosis. Milk production and milk composition were evaluated monthly. Pregnancy was diagnosed on Day 28 (by Pregnancy-specific protein B [PSPB]), 32, 47, and 61 (by ultrasound) and sizes of embryonic and amniotic vesicle were determined by ultrasound on Day 33 after AI. Feeding RPM increased plasma Met at 6, 9, 12, and 18 hours after top-dressing with a peak at 12 hours (52.4 vs 26.0 μM; P < 0.001) and returned to basal by 24 hours. Cows fed RPM had a small increase in milk protein percentage (3.08 vs 3.00%; P = 0.04) with no differences on milk yield and milk protein yield. Additionally, in multiparous cows, RPM feeding increased milk protein (3.03 vs 2.95%; P = 0.05) and fat (3.45 vs 3.14%; P = 0.01) percentages, although no effects were observed in primiparous cows. In multiparous cows fed RPM, pregnancy loss was lower between Days 28 to 61 (19.6 [10/51] vs. 6.1% [3/49]; P = 0.03) or between Days 32 to 61 (8.9 [4/45] vs. 0 [0/0] %; P = 0.03), although, there was no effect of treatment on pregnancy loss in primiparous cows. Consistent with data on pregnancy loss, RPM feeding increased embryonic abdominal diameter (P = 0.01) and volume (P = 0.009) and amniotic vesicle volume (P = 0.04) on Day 33 of pregnancy in multiparous cows but had no effect on embryonic size in primiparous cows. Thus, the increase in plasma Met concentrations after feeding RPM was sufficient to produce a small increase in milk protein percentage and to improve embryonic size and pregnancy maintenance in multiparous cows. Further studies are needed to confirm these responses and understand the biological mechanisms that underlie these responses as well as the timing and concentrations of circulating Met that are needed to produce this effect.eng
dc.format.extent24 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherPLoS ONEspa
dc.relation.ispartofPLoS ONE ISSN: 1932-6203, 2017 vol:12 fasc: 12 págs: 1 - 24, DOI:10.1371/journal.pone.0189117
dc.rights2017 Toledo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.eng
dc.sourcehttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189117#ackspa
dc.titleEffect of feeding rumen-protected methionine on productive and reproductive performance of dairy cowseng
dc.typeArtículo de revistaspa
dcterms.referencesBritt JH. Impacts of Early Postpartum Metabolism on follicular Development and Fertility. Proc Am Assoc Bovine Pract. 1992; 24:39–43.spa
dcterms.referencesChapinal N, Leblanc SJ, Carson ME, Leslie KE, Godden S, Capel M, et al. Herd-level association of serum metabolites in the transition period with disease, milk production, and early lactation reproductive performance. Journal of dairy science. 2012; 95(10):5676–82. Epub 2012/08/07. https://doi.org/10. 3168/jds.2011-5132 PMID: 22863094.spa
dcterms.referencesCarvalho PD, Souza AH, Amundson MC, Hackbart KS, Fuenzalida MJ, Herlihy MM, et al. Relationships between fertility and postpartum changes in body condition and body weight in lactating dairy cows. Journal of dairy science. 2014; 97(6):3666–83. Epub 2014/04/16. https://doi.org/10.3168/jds.2013- 7809 PMID: 24731646.spa
dcterms.referencesHansen PJ, Denicol AC, Dobbs KB. Maternal embryokines that regulate development of the bovine preimplantation embryo. Turk J Vet Anim Sci. 2014; 38:589–98. https://doi.org/10.3906/vet-1405-96spa
dcterms.referencesGao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients in the ovine uterine lumen. III. Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses. Biology of reproduction. 2009; 80(3):602–9. Epub 2008/11/29. https://doi.org/10.1095/biolreprod.108.073890 PMID: 19038856.spa
dcterms.referencesBazer FW, Wu G, Johnson GA, Kim J, Song G. Uterine histotroph and conceptus development: select nutrients and secreted phosphoprotein 1 affect mechanistic target of rapamycin cell signaling in ewes. Biology of reproduction. 2011; 85(6):1094–107. Epub 2011/08/26. https://doi.org/10.1095/biolreprod. 111.094722 PMID: 21865556.spa
dcterms.referencesRoche JR, Burke CR, Meier S, Walker CG. Nutrition x reproduction interaction in pasture-based systems: is nutrition a factor in reproductive failure? Anim Prod Sci. 2011; 51(12):1045. https://doi.org/10. 1071/an10162spa
dcterms.referencesBisinotto RS, Greco LF, Ribeiro ES, Martinez N, Lima FS, Staples CR, et al. Influences of nutrition and metabolism on fertility of dairy cows. Anim Reprod. 2012; 9:260–72.spa
dcterms.referencesLucy MC, Butler ST, Garverick HA. Endocrine and metabolic mechanisms linking postpartum glucose with early embryonic and foetal development in dairy cows. Animal: an international journal of animal bioscience. 2014; 8 Suppl 1:82–90. Epub 2014/04/01. https://doi.org/10.1017/S1751731114000482 PMID: 24679333.spa
dcterms.referencesGroebner AE, Rubio-Aliaga I, Schulke K, Reichenbach HD, Daniel H, Wolf E, et al. Increase of essential amino acids in the bovine uterine lumen during preimplantation development. Reproduction. 2011; 141 (5):685–95. Epub 2011/03/09. https://doi.org/10.1530/REP-10-0533 PMID: 21383026.spa
dcterms.referencesHugentobler SA, Diskin MG, Leese HJ, Humpherson PG, Watson T, Sreenan JM, et al. Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Molecular reproduction and development. 2007; 74(4):445–54. Epub 2006/09/26. https://doi.org/10.1002/mrd.20607 PMID: 16998855.spa
dcterms.referencesGao H, Wu G, Spencer TE, Johnson GA, Li X, Bazer FW. Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biology of reproduction. 2009; 80(1):86–93. Epub 2008/08/30. https://doi.org/10.1095/biolreprod.108.071597 PMID: 18753605.spa
dcterms.referencesBrosnan JT, Brosnan ME, Bertolo RFP, Brunton JA. Methionine: A metabolically unique amino acid. Livest Sci. 2007; 112(1–2):2–7. https://doi.org/10.1016/j.livsci.2007.07.005spa
dcterms.referencesMetayer S, Seiliez I, Collin A, Duchene S, Mercier Y, Geraert PA, et al. Mechanisms through which sulfur amino acids control protein metabolism and oxidative status. The Journal of nutritional biochemistry. 2008; 19(4):207–15. Epub 2007/08/21. https://doi.org/10.1016/j.jnutbio.2007.05.006 PMID: 17707628.spa
dcterms.referencesSigler PB. An analysis of structure of transfer-RNA. Annu Rev Biophys Bioeng. 1975; 4:477–527. https://doi.org/10.1146/annurev.bb.04.060175.002401 PMID: 1098566spa
dcterms.referencesZanton GI, Bowman GR, Vazquez-Anon M, Rode LM. Meta-analysis of lactation performance in dairy cows receiving supplemental dietary methionine sources or postruminal infusion of methionine. J Dairy Sci. 2014; 97(11):7085–101. Epub 2014/09/23. https://doi.org/10.3168/jds.2014-8220 PMID: 25242429.spa
dcterms.referencesVyas D, Erdman RA. Meta-analysis of milk protein yield responses to lysine and methionine supplementation. J Dairy Sci. 2009; 92(10):5011–8. Epub 2009/09/19. https://doi.org/10.3168/jds.2008-1769 PMID: 19762820.spa
dcterms.referencesPatton RA. Effect of rumen-protected methionine on feed intake, milk production, true milk protein concentration, and true milk protein yield, and the factors that influence these effects: a meta-analysis. J Dairy Sci. 2010; 93(5):2105–18. Epub 2010/04/24. https://doi.org/10.3168/jds.2009-2693 PMID: 20412926.spa
dcterms.referencesBonilla L, Luchini Daniel, Devillard E, Hansen PJ. Methionine requirements for the preimplantation bovine embryo. J Reprod Dev. 2010; 56(5):527–32. PMID: 20562524spa
dcterms.referencesIkeda S, Sugimoto M, Kume S. Importance of methionine metabolism in morula-to-blastocyst transition in bovine preimplantation embryos. J Reprod Dev. 2012; 58(1):91–7. PMID: 22052008spa
dcterms.referencesPeñagaricano F, Souza AH, Carvalho PD, Driver AM, Gambra R, Kropp J, et al. Effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos. PLoS ONE. 2013; 8(8):e72302. https://doi.org/10.1371/journal.pone.0072302 PMID: 23991086spa
dcterms.referencesAcosta DA, Denicol AC, Tribulo P, Rivelli MI, Skenandore C, Zhou Z, et al. Effects of rumen-protected methionine and choline supplementation on the preimplantation embryo in Holstein cows. Theriogenology. 2016; 85(9):1669–79. Epub 2016/03/02. https://doi.org/10.1016/j.theriogenology.2016.01.024 PMID: 26928647.spa
dcterms.referencesGao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients in the ovine uterine lumen. IV. Expression of neutral and acidic amino acid transporters in ovine uteri and peri-implantation conceptuses. Biology of reproduction. 2009; 80(6):1196–208. Epub 2009/01/30. https://doi.org/10.1095/ biolreprod.108.075440 PMID: 19176878.spa
dcterms.referencesFerguson JD, Galligan DT, Thomsen N. Principal descriptors of body condition score in Holstein cows. J Dairy Sci. 1994; 77:2695–703. https://doi.org/10.3168/jds.S0022-0302(94)77212-X PMID: 7814740spa
dcterms.referencesVan Amburgh M, Chase L, Overton T, Ross D, Recktenwald E, Higgs R, et al. Updates to the Cornell Net Carbohydrate and Protein System v6. 1 and implications for ration formulation. Proc Cornell Nutr Conf; Dept Anim Sci, Cornell Univ, Ithaca, NY2010.spa
dcterms.referencesNRC. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition. Seventh Revised Edition ed. Washington, DC, USA: National Research Council National Academy Press; 2001.spa
dcterms.referencesAyres H, Ferreira RM, Cunha AP, Araujo RR, Wiltbank MC. Double-Ovsynch in high-producing dairy cows: effects on progesterone concentrations and ovulation to GnRH treatments. Theriogenology. 2013; 79(1):159–64. Epub 2012/11/06. https://doi.org/10.1016/j.theriogenology.2012.10.001 PMID: 23122207.spa
dcterms.referencesSouza AH, Ayres H, Ferreira RM, Wiltbank MC. A new presynchronization system (Double-Ovsynch) increases fertility at first postpartum timed AI in lactating dairy cows. Theriogenology. 2008; 70(2):208– 15. Epub 2008/05/13. https://doi.org/10.1016/j.theriogenology.2008.03.014 PMID: 18468675.spa
dcterms.referencesHerlihy MM, Giordano JO, Souza AH, Ayres H, Ferreira RM, Keskin A, et al. Presynchronization with Double-Ovsynch improves fertility at first postpartum artificial insemination in lactating dairy cows. Journal of dairy science. 2012; 95(12):7003–14. Epub 2012/10/02. https://doi.org/10.3168/jds.2011-5260 PMID: 23021750.spa
dcterms.referencesVan Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991; 74:3583–97. https://doi.org/10.3168/ jds.S0022-0302(91)78551-2 PMID: 1660498spa
dcterms.referencesBach Knudsen KE. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim Feed Sci Technol. 1997; 67:319–38.spa
dcterms.referencesLobos NE, Broderick GA, Carvalho PD, Luchini DN, Shaver RD, Souza AH, et al. Amino acid analysis in dairy cow plasma by chloroformate derivatization and gas chromatography. Journal of dairy science. 2014; 97:759 (E-Suppl. 1).spa
dcterms.referencesMohabbat T, Drew B. Simultaneous determination of 33 amino acids and dipeptides in spent cell culture media by gas chromatography-flame ionization detection following liquid and solid phase extraction. Journal of chromatography B, Analytical technologies in the biomedical and life sciences. 2008; 862(1– 2):86–92. Epub 2007/12/11. https://doi.org/10.1016/j.jchromb.2007.11.003 PMID: 18069078.spa
dcterms.referencesHusek P. Rapid derivatization and gas chromatographic determination of amino acids. J Chromatogr. 1991; 552:289–99.spa
dcterms.referencesBaez GM, Barletta RV, Guenther JN, Gaska JM, Wiltbank MC. Effect of uterine size on fertility of lactating dairy cows. Theriogenology. 2016; 85(8):1357–66. Epub 2016/03/01. https://doi.org/10.1016/j. theriogenology.2015.04.022 PMID: 26924681.spa
dcterms.referencesBertolini MB, Mason JB, Beam SW, Carneiro GF, Sween ML, Kominek DJ, et al. Morphology and morphometry of in vivo and in vivo produced bovino concepiti from early pregnancy to term and association with birth weights. Theriogenology. 2002; 58:973–94. PMID: 12212896spa
dcterms.referencesRibeiro ES, Bruno RG, Farias AM, Hernandez-Rivera JA, Gomes GC, Surjus R, et al. Low doses of bovine somatotropin enhance conceptus development and fertility in lactating dairy cows. Biology of reproduction. 2014; 90(1):10. Epub 2013/11/29. https://doi.org/10.1095/biolreprod.113.114694 PMID: 24285716.spa
dcterms.referencesLima FS, Sa Filho MF, Greco LF, Santos JE. Effects of feeding rumen-protected choline on incidence of diseases and reproduction of dairy cows. Vet J. 2012; 193(1):140–5. Epub 2011/12/20. https://doi.org/ 10.1016/j.tvjl.2011.09.019 PMID: 22178357.spa
dcterms.referencesHutchinson IA, Hennessy AA, Dewhurst RJ, Evans AC, Lonergan P, Butler ST. The effect of strategic supplementation with trans-10,cis-12 conjugated linoleic acid on the milk production, estrous cycle characteristics, and reproductive performance of lactating dairy cattle. Journal of dairy science. 2012; 95 (5):2442–51. Epub 2012/05/01. https://doi.org/10.3168/jds.2011-4632 PMID: 22541471.spa
dcterms.referencesSchwab CG. Protected proteins and amino acids for ruminants. New York, NY: R. J. Wallace and A. Chesson; 1995.spa
dcterms.referencesRulquin H, Graulet B, Delaby L, Robert JC. Effect of different forms of methionine on lactational performance of dairy cows. J Dairy Sci. 2006; 89:4387–94. https://doi.org/10.3168/jds.S0022-0302(06) 72485-7 PMID: 17033026spa
dcterms.referencesBach A, Stern MD. Measuring resistance to ruminal degradation and bioavailability of ruminally protected methionine. Anim Feed Sci Technol. 2000; 84:23–32.spa
dcterms.referencesKoenig KM, Rode LM. Ruminal degradability, intestinal disappearance, and plasma methionine response of rumen-protected methionine in dairy cows. J Dairy Sci. 2001; 84:1480–7. https://doi.org/ 10.3168/jds.S0022-0302(01)70181-6 PMID: 11417708spa
dcterms.referencesOrdway RS, Boucher SE, Whitehouse NL, Schwab CG, Sloan BK. Effects of providing two forms of supplemental methionine to periparturient Holstein dairy cows on feed intake and lactational performance. J Dairy Sci. 2009; 92(10):5154–66. Epub 2009/09/19. https://doi.org/10.3168/jds.2009-2259 PMID: 19762834.spa
dcterms.referencesSocha MT, Putnam DE, Garthwaite BD, Whitehouse NL, Kierstead NA, Schwab CG, et al. Improving intestinal amino acid supply of pre- and postpartum dairy cows with rumen-protected methionine and lysine. J Dairy Sci. 2005; 88:1113–26. https://doi.org/10.3168/jds.S0022-0302(05)72778-8 PMID: 15738245spa
dcterms.referencesArmentano LE, Bertics SJ, Ducharme GA. Response of lactating cows to methionine or methionine plus lysine added to high protein diets based on alfalfa and heated soybeans. J Dairy Sci. 1997; 80:1194–9. https://doi.org/10.3168/jds.S0022-0302(97)76047-8 PMID: 9201591spa
dcterms.referencesSocha MT, Putnam DE, Garthwaite BD, Whitehouse NL, Kierstead NA, Schwab CG, et al. Improving Intestinal Amino Acid Supply of Pre- and Postpartum Dairy Cows with Rumen-Protected Methionine and Lysine. J Dairy Sci. 2005; 88:1113–26. https://doi.org/10.3168/jds.S0022-0302(05)72778-8 PMID: 15738245spa
dcterms.referencesLeonardi C, Stevenson M, Armentano LE. Effect of two levels of crude protein and methionine supplementation on performance of dairy cows. J Dairy Sci. 2003; 86:4033–42. https://doi.org/10.3168/jds. S0022-0302(03)74014-4 PMID: 14740841spa
dcterms.referencesChen ZH, Broderick GA, Luchini ND, Sloan BK, Devillard E. Effect of feeding different sources of rumen-protected methionine on milk production and N-utilization in lactating dairy cows. J Dairy Sci. 2011; 94(4):1978–88. Epub 2011/03/24. https://doi.org/10.3168/jds.2010-3578 PMID: 21426989.spa
dcterms.referencesSouza AH, Carvalho PD, Dresch AR, Vieira LM, Hackbart KS, Luchini D, et al. Effect of dietary methionine supplementation in early lactation dairy cows. I. Dry matter intake, milk yield, milk composition and component yields. J Dairy Sci. 2012; 95(E-suppl. 1):T288. (Abstr.).spa
dcterms.referencesCarvalho PD, Guenther JN, Fuenzalida MJ, Amundson MC, Wiltbank MC, Fricke PM. Presynchronization using a modified Ovsynch protocol or a single gonadotropin-releasing hormone injection 7 d before an Ovsynch-56 protocol for submission of lactating dairy cows to first timed artificial insemination. Journal of dairy science. 2014; 97(10):6305–15. Epub 2014/08/05. https://doi.org/10.3168/jds.2014-8222 PMID: 25087033.spa
dcterms.referencesWiltbank MC, Baez GM, Cochrane F, Barletta RV, Trayford CR, Joseph RT. Effect of a second treatment with prostaglandin F2alpha during the Ovsynch protocol on luteolysis and pregnancy in dairy cows. Journal of dairy science. 2015; 98(12):8644–54. Epub 2015/10/05. https://doi.org/10.3168/jds. 2015-9353 PMID: 26433418.spa
dcterms.referencesCarvalho PD, Wiltbank MC, Fricke PM. Manipulation of progesterone to increase ovulatory response to the first GnRH treatment of an Ovsynch protocol in lactating dairy cows receiving first timed artificial insemination. Journal of dairy science. 2015; 98(12):8800–13. Epub 2015/10/12. https://doi.org/10. 3168/jds.2015-9968 PMID: 26454293.spa
dcterms.referencesSantos JE, Thatcher WW, Chebel RC, Cerri RL, Galvao KN. The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Anim Reprod Sci. 2004; 82–83:513–35. Epub 2004/07/24. https://doi.org/10.1016/j.anireprosci.2004.04.015 PMID: 15271477.spa
dcterms.referencesWiltbank MC, Baez GM, Garcia-Guerra A, Toledo MZ, Monteiro PL, Melo LF, et al. Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology. 2016; 86 (1):239–53. Epub 2016/05/31. https://doi.org/10.1016/j.theriogenology.2016.04.037 PMID: 27238438.spa
dcterms.referencesSantos JE, Rutigliano HM, Sa Filho MF. Risk factors for resumption of postpartum estrous cycles and embryonic survival in lactating dairy cows. Animal reproduction science. 2009; 110(3–4):207–21. Epub 2008/02/26. https://doi.org/10.1016/j.anireprosci.2008.01.014 PMID: 18295986.spa
dcterms.referencesLo´pez-Gatius F, Santolaria P, Ya´niz JL, Garbayo JM, Hunter RHF. Timing of early foetal loss for single and twin pregnancies in dairy cattle. Reprod Domest Anim. 2004; 39:429–33. https://doi.org/10.1111/j. 1439-0531.2004.00533.x PMID: 15598233spa
dcterms.referencesGreen JA, Xie S, Quan X, Bao B, Gan X, Mathialagan N, et al. Pregnancy-associated bovine and ovine glycoproteins exhibit spatially and temporally distinct expression patterns during pregnancy. Biology of reproduction. 2000; 62:1624–31. PMID: 10819764spa
dcterms.referencesGreen JA, Parks TE, Avalle MP, Telugu BP, McLain AL, Peterson AJ, et al. The establishment of an ELISA for the detection of pregnancy-associated glycoproteins (PAGs) in the serum of pregnant cows and heifers. Theriogenology. 2005; 63(5):1481–503. Epub 2005/02/24. https://doi.org/10.1016/j. theriogenology.2004.07.011 PMID: 15725453.spa
dcterms.referencesSilva E, Sterry RA, Kolb D, Mathialagan N, McGrath MF, Ballam JM, et al. Accuracy of a pregnancyassociated glycoprotein ELISA to determine pregnancy status of lactating dairy cows twenty-seven days after timed artificial insemination. Journal of dairy science. 2007; 90(10):4612–22. Epub 2007/09/ 21. https://doi.org/10.3168/jds.2007-0276 PMID: 17881682.spa
dcterms.referencesRicci A, Carvalho PD, Amundson MC, Fourdraine RH, Vincenti L, Fricke PM. Factors associated with pregnancy-associated glycoprotein (PAG) levels in plasma and milk of Holstein cows during early pregnancy and their effect on the accuracy of pregnancy diagnosis. Journal of dairy science. 2015; 98 (4):2502–14. Epub 2015/02/11. https://doi.org/10.3168/jds.2014-8974 PMID: 25660740.spa
dcterms.referencesPohler KG, Pereira MH, Lopes FR, Lawrence JC, Keisler DH, Smith MF, et al. Circulating concentrations of bovine pregnancy-associated glycoproteins and late embryonic mortality in lactating dairy herds. J Dairy Sci. 2016; 99(2):1584–94. Epub 2015/12/29. https://doi.org/10.3168/jds.2015-10192 PMID: 26709163.spa
dcterms.referencesMercadante PM, Waters KM, Mercadante VRG, Lamb GC, Elzo MA, Johnson SE, et al. Subspecies differences in early fetal development and plasma pregnancy-associated glycoprotein concentrations in cattle. J Anim Sci. 2013; 91:3693–701. https://doi.org/10.2527/jas.2012-6130 PMID: 23881679spa
dcterms.referencesLopes-da-Costa L, Chagas e Silva J, Deloche MC, Jeanguyot N, Humblot P, Horta AE. Effects of embryo size at transfer (whole versus demi) and early pregnancy progesterone supplementation on embryo growth and pregnancy-specific protein bovine concentrations in recipient dairy heifers. Theriogenology. 2011; 76(3):522–31. Epub 2011/04/19. https://doi.org/10.1016/j.theriogenology.2011.03.004 PMID: 21497389.spa
dcterms.referencesRibeiro ES, Bruno RG, Farias AM, Hernandez-Rivera JA, Gomes GC, Surjus R, et al. Low doses of bovine somatotropin enhance conceptus development and fertility in lactating dairy cows. Biology of reproduction. 2013; 90(1):10. Epub 2013/11/29. https://doi.org/10.1095/biolreprod.113.114694 PMID: 24285716.spa
dcterms.referencesBaez GM, Garcia-Guerra A, Sala R, Fosado M, Toledo MZ, Wiltbank MC. Larger uterine size is associated with increased pregnancy loss and reduced fertility in heifers receiving an in-vitro produced embryo. In: Annu Meeting of the Society for the Study of Reprod. 2015; T218:87–8 (Abstr).spa
dcterms.referencesSouza AH, Carvalho PD, Dresch AR, Vieira LM, Hackbart KS, Luchini D, et al. Effect of methionine supplementation during postpartum period in dairy cows. II. Embryo quality. J Dairy Sci. 2012; 95(E-suppl. 1):T181. (Abstr.).spa
dcterms.referencesWallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism. Biochem J. 2003; 376:1– 14. https://doi.org/10.1042/BJ20031327 PMID: 13678416spa
dcterms.referencesBistulfi G, Diegelman P, Foster BA, Kramer DL, Porter CW, Smiraglia DJ. Polyamine biosynthesis impacts cellular folate requirements necessary to maintain S-adenosylmethionine and nucleotide pools. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2009; 23(9):2888–97. Epub 2009/05/07. https://doi.org/10.1096/fj.09-130708 PMID: 19417083; PubMed Central PMCID: PMC2735368.spa
dcterms.referencesLefevre PL, Palin MF, Murphy BD. Polyamines on the reproductive landscape. Endocrine reviews. 2011; 32(5):694–712. Epub 2011/07/28. https://doi.org/10.1210/er.2011-0012 PMID: 21791568.spa
dcterms.referencesLo´pez-Garcı´a C, Lo´pez-Contreras AJ, Cremades A, Castells MT, Marin F, Schreiber F, et al. Molecular and morphological changes in placenta and embryo development associated with the inhibition of polyamine synthesis during midpregnancy in mice. Endocrinology. 2008; 149(10):5012–23. Epub 2008/06/ 28. https://doi.org/10.1210/en.2008-0084 PMID: 18583422.spa
dcterms.referencesGao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients in the ovine uterine lumen. V. Nitric oxide synthase, GTP cyclohydrolase, and ornithine decarboxylase in ovine uteri and peri-implantation conceptuses. Biology of reproduction. 2009; 81(1):67–76. Epub 2009/02/28. https://doi.org/10.1095/ biolreprod.108.075473 PMID: 19246319.spa
dc.identifier.doi10.1371/journal.pone.0189117
dc.publisher.placeInglaterraspa
dc.relation.citationeditionVol. 12, No. 12 (2017)spa
dc.relation.citationendpage24spa
dc.relation.citationissue12 (1017)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume12spa
dc.relation.citesToledo MZ, Baez GM, Garcia-Guerra A, Lobos NE, Guenther JN, Trevisol E, et al. (2017) Effect of feeding rumen-protected methionine on productive and reproductive performance of dairy cows. PLoS ONE 12(12): e0189117. https://doi. org/10.1371/journal.pone.0189117
dc.relation.ispartofjournalPLoS ONEspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem