Mostrar el registro sencillo del ítem

dc.contributor.authorBaez, Giovanni
dc.contributor.authorOchoa, Julian
dc.contributor.authorPeñagaricano, Francisco
dc.contributor.authorMelo, Leonardo
dc.contributor.authorLemos Motta, Jessica Cristina
dc.contributor.authorGarcia Guerra, Alvaro
dc.contributor.authorMeidan, Rina
dc.contributor.authorPinheiro Ferreira, João Carlos
dc.contributor.authorSartori, Roberto
dc.contributor.authorWiltbank, Milo
dc.date.accessioned2021-11-02T14:41:53Z
dc.date.available2021-11-02T14:41:53Z
dc.date.issued2017-12-27
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/591
dc.description.abstractIn ruminants, uterine pulses of prostaglandin (PG) F2α characterize luteolysis, while increased PGE2/PGE1 distinguish early pregnancy. This study evaluated intrauterine (IU) infusions of PGF2α and PGE1 pulses on corpus luteum (CL) function and gene expression. Cows on day 10 of estrous cycle received 4 IU infusions (every 6 h; n = 5/treatment) of saline, PGE1 (2 mg PGE1), PGF2α (0.25 mg PGF2α), or PGE1 + PGF2α. A luteal biopsy was collected at 30 min after third infusion for determination of gene expression by RNA-Seq. As expected, IU pulses of PGF2α decreased (P < 0.01) P4 luteal volume. However, there were no differences in circulating P4 or luteal volume between saline, PGE1, and PGE1 + PGF2α, indicating inhibition of PGF2α-induced luteolysis by IU pulses of PGE1. After third pulse of PGF2α, luteal expression of 955 genes were altered (false discovery rate [FDR] < 0.01), representing both typical and novel luteolytic transcriptomic changes. Surprisingly, after third pulse of PGE1 or PGE1 + PGF2α, there were no significant changes in luteal gene expression (FDR > 0.10) compared to saline cows. Increased circulating concentrations of the metabolite of PGF2α (PGFM; after PGF2α and PGE1 + PGF2α) and the metabolite PGE (PGEM; after PGE1 and PGE1 + PGF2α) demonstrated that PGF2α and PGE1 are entering bloodstream after IU infusions. Thus, IU pulses of PGF2α and PGE1 allow determination of changes in luteal gene expression that could be relevant to understanding luteolysis and pregnancy. Unexpectedly, by third pulse of PGE1, there is complete blockade of either PGF2α transport to the CL or PGF2α action by PGE1 resulting in complete inhibition of transcriptomic changes following IU PGF2α pulses.eng
dc.format.extent15 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherBiology of Reproductionspa
dc.relation.ispartofBiology of Reproduction ISSN: 0006-3363, 2018 vol:98 fasc: 4 págs: 465 - 479, DOI:10.1093/biolre/iox183
dc.rightsThe Author(s) 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.comeng
dc.sourcehttps://academic.oup.com/biolreprod/article/98/4/465/4780269spa
dc.titleMechanisms for rescue of corpus luteum during pregnancy: gene expression in bovine corpus luteum following intrauterine pulses of prostaglandins E1 and F2αeng
dc.typeArtículo de revistaspa
dcterms.referencesMcCracken J, Carlson J, Glew M, Goding J, Baird D, Green K, Samuelsson B. Prostaglandin F2α identified as a luteolytic hormone in sheep. Nature 1972; 238:129–134.spa
dcterms.referencesNorthey DL, French LR. Effect of embryo removal and intrauterine infusion of embryonic homogenates on the lifespan of the bovine corpus luteum J Anim Sci 1980; 50:298–302.spa
dcterms.referencesSpencer TE, Mirando MA, Mayes JS, Watson GH, Ott TL, Bazer FW. Effects of interferon-tau and progesterone on oestrogen-stimulated expression of receptors for oestrogen, progesterone and oxytocin in the endometrium of ovariectomized ewes. Reprod Fertil Dev 1996; 8: 843–853.spa
dcterms.referencesBazer FW, Song G, Thatcher WW. Roles of Conceptus secretory proteins in establishment and maintenance of pregnancy in ruminants. Asian Australas J Anim Sci 2012; 25:1–16.spa
dcterms.referencesDorniak P, Bazer FW, Spencer TE. Physiology and endocrinology symposium: biological role of interferon tau in endometrial function and conceptus elongation. J Anim Sci 2013; 91:1627–1638.spa
dcterms.referencesOliveira JF, Henkes LE, Ashley RL, Purcell SH, Smirnova NP, Veeramachaneni DN, Anthony RV, Hansen TR. Expression of interferon (IFN)- stimulated genes in extrauterine tissues during early pregnancy in sheep is the consequence of endocrine IFN-tau release from the uterine vein. Endocrinology 2008; 149:1252–1259spa
dcterms.referencesHansen TR, Romero JJ, Antoniazzi AQ, Bott RC, Ashley RL, Webb BT, Henkes LE, Smirnova NP. Endocrine conceptus signaling in ruminants. Anim Reprod 2013; 10:311–321.spa
dcterms.referencesArosh JA, Banu SK, Kimmins S, Chapdelaine P, MacLaren LA, Fortier MA. Effect of Interferon-pi on prostaglandin biosynthesis, transport, andsignaling at the time of maternal recognition of pregnancy in cattle: evidence of polycrine actions of prostaglandin E-2. Endocrinology 2004; 145:5280–5293.spa
dcterms.referencesLee J, McCracken JA, Stanley JA, Nithy TK, Banu SK, Arosh JA. Intraluteal prostaglandin biosynthesis and signaling are selectively directed towards PGF2alpha during luteolysis but towards PGE2 during the establishment of pregnancy in Sheep. Biol Reprod 2012; 87:97.spa
dcterms.referencesArosh JA, Lee J, Stephen SD, Stanley JA, Yang B, Nithy TK, Banu SK, McCracken JA. Intrauterine infusion of interferon tau selectively directs intraluteal prostaglandin biosynthesis towards PGE2 and activates EP2 and EP4-mediated signaling in the corpus luteum at the time of establishment of pregnancy in ruminants. Biol Reprod 2011; 85:S1.spa
dcterms.referencesEllinwood W, Nett T, Niswender G. Maintenance of the corpus luteum of early pregnancy in the Ewe. II. Prostaglandin secretion by the endometrium in vitro and in vivo. Biol Reprod 1979; 21:845–856.spa
dcterms.referencesHuie JM, Magness RR, Reynolds LP, Hoyer G, Huecksteadt T, Colcord M, Stalcup B, Whysong GL, Weems CW. Effect of chronic ipsilateral or contralateral intra-uterine infusion of prostaglandin E1 (PGE1) on luteal function of unilaterally ovariectomized ewes. Prostaglandins 1981; 21:945–955.spa
dcterms.referencesWeems YS, Arreguin-Arevalo JA, Nett TM, Vann RC, Ford SP, Bridges PJ, Welsh TH, Lewis AW, Neuendorff DA, Randel RD, Weems CW. In vivo intra-luteal implants of prostaglandin (PG) E1 or E2 (PGE1, PGE2) prevent luteolysis in cows. I. Luteal weight, circulating progesterone, mRNA for luteal luteinizing hormone (LH) receptor, and occupied and unoccupied luteal receptors for LH. Prostaglandins Other Lipid Mediat 2011; 95:35–44.spa
dcterms.referencesWeems CW, Weems YS, Randel RD. Prostaglandins and reproduction in female farm animals. Vet J 2006; 171:206–228.spa
dcterms.referencesDiez E, Chilton F, Stroup G, Mayer R, Winkler J, Fonteh A. Fatty acid and phospholipid selectivity of different phospholipase A2 enzymes studied by using a mammalian membrane as substrate. Biochem J 1994; 301:721– 726.spa
dcterms.referencesBonney R, Qizilbash S, Franks S. Endometrial phospholipase A2 enzymes and their regulation by steroid hormones. J Steroid Biochem 1987; 27:1057–1064.spa
dcterms.referencesHansen W, Keelan J, Skinner S, Mitchell M. Key enzymes of prostaglandin biosynthesis and metabolism. Coordinate regulation of expression by cytokines in gestational tissues: a review. Prostaglandins Other Lipid Mediat 1999; 57:243–257.spa
dcterms.referencesPark JY, Pillinger MH, Abramson SB. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol 2006; 119:229–240.spa
dcterms.referencesStables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res 2011; 50:35–51.spa
dcterms.referencesSmith WL, Dewitt DL. Prostaglandin endoperoxide H synthases-1 and-2. Adv Immunol 1996; 62:167–216.spa
dcterms.referencesAnderson LE, Wu YL, Tsai SJ, Wiltbank MC. Prostaglandin F2 alpha receptor in the corpus luteum: recent information on the gene, messenger ribonucleic acid, and protein. Biol Reprod 2001; 64:1041–1047.spa
dcterms.referencesParker I, Ivorra I. Localized all-or-none calcium liberation by inositol trisphosphate. Science 1990; 250:977–979.spa
dcterms.referencesHoyer P, Marion S. Influence of agents that affect intracellular calcium regulation on progesterone secretion in small and large luteal cells of the sheep. Reproduction 1989; 86:445–455.spa
dcterms.referencesMart´ınez-Zaguilan R, Wegner JA, Gillies RJ, Hoyer PB. Differential reg- ´ ulation of Ca2+ homeostasis in ovine large and small luteal cells. Endocrinology 1994; 135:2099–2108.spa
dcterms.referencesWiltbank M, Diskin M, Niswender G. Differential actions of second messenger systems in the corpus luteum. J Reprod Fertil Suppl 1990; 43: 65–75.spa
dcterms.referencesDavis JS, Weakland LL, Weiland DA, Farese RV, West LA. Prostaglandin F2 alpha stimulates phosphatidylinositol 4,5-bisphosphate hydrolysis and mobilizes intracellular Ca2+ in bovine luteal cells. Proc Natl Acad Sci 1987; 84:3728–3732.spa
dcterms.referencesGoupil E, Tassy D, Bourguet C, Quiniou C, Wisehart V, Petrin D, Le Gouill C, Devost D, Zingg HH, Bouvier M, Saragovi HU, Chemtob S et al. A novel biased allosteric compound inhibitor of parturition selectively impedes the prostaglandin F2 alpha-mediated Rho/ROCK signaling pathway. J Biol Chem 2010; 285:25624–25636.spa
dcterms.referencesNarumiya S, FitzGerald GA. Genetic and pharmacological analysis of prostanoid receptor function. J Clin Invest 2001; 108:25–30.spa
dcterms.referencesNarumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev 1999; 79:1193–1226.spa
dcterms.referencesAnderson LE, Schultz MK, Wiltbank MC. Prostaglandin moieties that determine receptor binding specificity in the bovine corpus luteum. Reproduction 1999; 116:133–141.spa
dcterms.referencesWeems CW, Huecksteadt TP, Sjahli H, Lavelle P. Effects of PGE1 or PGE2 on luteal function in pseudopregnant rats. Prostaglandins 1979; 17:891–901.spa
dcterms.referencesTai HH, Ensor CM, Tong M, Zhou HP, Yan FX. Prostaglandin catabolizing enzymes. Prostaglandins Other Lipid Mediat 2002; 68–9: 483–493.spa
dcterms.referencesKnickerbocker J, Wiltbank M, Niswender G. Mechanisms of luteolysis in domestic livestock. Domest Anim Endocrinol 1988; 5:91–107spa
dcterms.referencesMcCracken JA, Custer EE, Lamsa JC. Luteolysis: a neuroendocrinemediated event. Physiol Rev 1999; 79:263–323.spa
dcterms.referencesKindahl H, Edqvist L-E, Bane A, Granstrom E. Blood levels of progesterone and 15-keto-13,14-dihydro-prostaglandin F2a during the normal oestrous cycle and early pregnancy in heifers. Acta Endocrinol 1976; 82:134–149.spa
dcterms.referencesMann GE, Lamming GE. Timing of prostaglandin F2 alpha release episodes and oxytocin receptor development during luteolysis in the cow. Anim Reprod Sci 2006; 93:328–336.spa
dcterms.referencesGinther OJ, Araujo RR, Palhao MP, Rodrigues BL, Beg MA. Necessity of sequential pulses of prostaglandin F2alpha for complete physiologic luteolysis in cattle. Biol Reprod 2009; 80:641–648.spa
dcterms.referencesAtli MO, Bender RW, Mehta V, Bastos MR, Luo WX, Vezina CM, Wiltbank MC. Patterns of gene expression in the bovine corpus luteum following repeated intrauterine infusions of low doses of prostaglandin F2alpha. Biol Reprod 2012; 86:130.spa
dcterms.referencesMondal M, Schilling B, Folger J, Steibel JP, Buchnick H, Zalman Y, Ireland JJ, Meidan R, Smith GW. Deciphering the luteal transcriptome: potential mechanisms mediating stage-specific luteolytic response of the corpus luteum to prostaglandin F-2 alpha. Physiol Genom 2011; 43: 447–456.spa
dcterms.referencesSmith GW, Meidan R. Ever-changing cell interactions during the life span of the corpus luteum: relevance to luteal regression Reprod Biol 2014; 14:75–82.spa
dcterms.referencesFields M, Fields P. Morphological characteristics of the bovine corpus luteum during the estrous cycle and pregnancy. Theriogenology 1996; 45:1295–1325.spa
dcterms.referencesMann G, Lamming G, Fray M. Plasma oestradiol and progesterone during early pregnancy in the cow and the effects of treatment with buserelin. Anim Reprod Sci 1995; 37:121–131.spa
dcterms.referencesGrygar I, Kudla´ c E, Dole ˇ zel R, Nedb ˇ alkov ´ a J. Volume of luteal tissue and ´ concentration of serum progesterone in cows bearing homogeneous corpus luteum or corpus luteum with cavity. Anim Reprod Sci 1997; 49:77–82.spa
dcterms.referencesMapletoft RJ, Lapin DR, Ginther OJ. The ovarian artery as the final component of the local luteotropic pathway between a gravid uterine horn and ovary in ewes. Biol Reprod 1976; 15:414–421.spa
dcterms.referencesMapletoft RJ, Delcampo MR, Ginther OJ. Unilateral luteotropic effect of uterine venous effluent of a gravid uterine horn in sheep. Exp Biol Med 1975; 150:129–133.spa
dcterms.referencesArosh JA, Banu SK, McCracken JA. Novel concepts on the role of prostaglandins on luteal maintenance and maternal recognition and establishment of pregnancy in ruminants. J Dairy Sci 2016; 99: 5926–5940.spa
dcterms.referencesDanetDesnoyers G, Meyer MD, Gross TS, Johnson JW, Thatcher WW. Regulation of endometrial prostaglandin synthesis during early pregnancy in cattle: Effects of phospholipases and calcium in vitro. Prostaglandins 1995; 50:313–330.spa
dcterms.referencesArnold DR, Binelli M, Vonk J, Alexenko AP, Drost M, Wilcox CJ, Thatcher WW. Intracellular regulation of endometrial PGF(2a) and PGE(2) production in dairy cows during early pregnancy and following treatment with recombinant interferon-tau. Domest Anim Endocrinol 2000; 18:199–216.spa
dcterms.referencesCharpigny G, Reinaud P, Tamby J-P, Creminon C, Guillomot M. Cyclooxygenase-2 unlike cyclooxygenase-1 is highly expressed in ovine embryos during the implantation period. Biol Reprod 1997; 57:1032– 1040spa
dcterms.referencesHyland J, Manns J, Humphrey W. Prostaglandin production by ovine embryos and endometrium in vitro. Reproduction 1982; 65:299–304.spa
dcterms.referencesSaint-Dizier M, Grimard B, Guyader-Joly C, Humblot P, Ponter AA. Expression of enzymes involved in the synthesis of prostaglandin E2 in bovine in vitro-produced embryos. Zygote 2011; 19:277–283.spa
dcterms.referencesReynolds L, Stigler J, Hoyer G, Magness R, Huie J, Huecksteadt T, Whysong G, Behrman H, Weems C. Effect of PGE1 or PGE2 on PGF2α-induced luteolysis in nonbred ewes. Prostaglandins 1981; 21:957– 972.spa
dcterms.referencesHenderson K, Scaramuzzi R, Baird D. Simultaneous infusion of prostaglandin E2 antagonizes the luteolytic action of prostaglandin F2α in vivo. J Endocrinol 1977; 72:379–383.spa
dcterms.referencesPratt BR, Butcher RL, Inskeep EK. Effect of continuous intrauterine administration of prostaglandin E on life-span corpora lutea of nonpregnant ewes. J Anim Sci 1979; 48:1441–1446.spa
dcterms.referencesBollwein H, Baumgartner U, Stolla R. Transrectal Doppler sonography of uterine blood flow in cows during pregnancy. Theriogenology 2002; 57:2053–2061.spa
dcterms.referencesTsai SJ, Kot K, Ginther OJ, Wiltbank MC. Temporal gene expression in bovine corpora lutea after treatment with PGF2alpha based on serial biopsies in vivo. Reproduction 2001; 121:905–913.spa
dcterms.referencesGinther OJ, Shrestha HK, Fuenzalida MJ, Shahiduzzaman AKM, Beg MA. Characteristics of pulses of 13,14-Dihydro-15-Keto-prostaglandin F2alpha before, during, and after spontaneous luteolysis and temporal intrapulse relationships with progesterone concentrations in cattle. Biol Reprod 2010; 82:1049–1056.spa
dcterms.referencesPenagaricano F, Souza AH, Carvalho PD, Driver AM, Gambra R, Kropp ˜ J, Hackbart KS, Luchini D, Shaver RD, Wiltbank MC, Khatib H. Effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos. PLoS One 2013; 8:e72302spa
dcterms.referencesPenagaricano F, Wang X, Rosa G, Radunz A, Khatib H. Maternal nutri- ˜ tion induces gene expression changes in fetal muscle and adipose tissues in sheep. BMC Genomics 2014; 15:1034.spa
dcterms.referencesTrapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25:1105–1111.spa
dcterms.referencesKim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013; 14:R36.spa
dcterms.referencesTrapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28:511–515.spa
dcterms.referencesAnders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31:166–169.spa
dcterms.referencesRobinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26:139–140.spa
dcterms.referencesMcCarthy DJ, Chen YS, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 2012; 40:4288–4297.spa
dcterms.referencesPenagaricano F, Weigel KA, Rosa GJM, Khatib H. Inferring quantitative ˜ trait pathways associated with bull fertility from a genome-wide association study. Front Gene 2013; 3:307.spa
dcterms.referencesMorota G, Penagaricano F, Petersen JL, Ciobanu DC, Tsuyuzaki K, Nikaido I. An application of MeSH enrichment analysis in livestock. Anim Genet 2015; 46:381–387.spa
dcterms.referencesYoung M, Wakefield M, Smyth G, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 2010; 11:R14.spa
dcterms.referencesTsuyuzaki K, Morota G, Ishii M, Nakazato T, Miyazaki S, Nikaido I. MeSH ORA framework: R/Bioconductor packages to support MeSH overrepresentation analysis. BMC Bioinform 2015; 16:45.spa
dcterms.referencesMapletoft RJ, Del Campo MR, Ginther OJ. Local venoarterial pathway for uterine-induced luteolysis in cows. Exp Biol Med 1976; 153:289–294.spa
dcterms.referencesGinther OJ. Local versus systemic utero-ovarian relationships in farm animals. Acta Vet Scand 1981; 77:103–115.spa
dcterms.referencesParkinson T, Lamming G. Interrelationships between progesterone, 13,14- dihydro-15-keto PGF-2a (PGFM) and LH in cyclic and early pregnant cows. Reproduction 1990; 90:221–233.spa
dcterms.referencesBoiti C, Zampini D, Zerani M, Guelfi G, Gobbetti A. Prostaglandin receptors and role of G protein-activated pathways on corpora lutea of pseudopregnant rabbit in vitro. J Endocrinol 2001; 168:141–151.spa
dcterms.referencesSakamoto K, Ezashi T, Miwa K, Okuda-Ashitaka E, Houtani T, Sugimoto T, Ito S, Hayaishi O. Molecular cloning and expression of a cDNA of the bovine prostaglandin F2 alpha receptor. J Biol Chem 1994; 269:3881– 3886.spa
dcterms.referencesDavis JS, Rueda BR. The corpus luteum: an ovarian structure with maternal instincts and suicidal tendencies. Front Biosci 2002; 7: d1949–d1978.spa
dcterms.referencesChen DB, Westfall SD, Fong HW, Roberson MS, Davis JS. Prostaglandin F-2 alpha stimulates the Raf/MEK1/mitogen-activated protein kinase signaling cascade in bovine luteal cells. Endocrinology 1998; 139:3876– 3885.spa
dcterms.referencesChen D, Fong HW, Davis JS. Induction of c-fos and c-jun messenger ribonucleic acid expression by prostaglandin F2alpha is mediated by a protein kinase C-dependent extracellular signal-regulated kinase mitogenactivated protein kinase pathway in bovine luteal cells. Endocrinology 2001; 142:887–895spa
dcterms.referencesHou X, Arvisais EW, Jiang C, Chen D-B, Roy SK, Pate JL, Hansen TR, Rueda BR, Davis JS. Prostaglandin F2 alpha stimulates the expression and secretion of transforming growth factor B1 via induction of the early growth response 1 gene (EGR1) in the bovine corpus luteum. Mol Endocrinol 2008; 22:403–414.spa
dcterms.referencesBertrand JE, Stormshak F. In vivo and in vitro responses of the bovine corpus luteum after exposure to exogenous gonadotropin-releasing hormone and prostaglandin F2α. Endocrine 1996; 4:165–173.spa
dcterms.referencesMiyamoto A, Shirasuna K, Shimizu T, Bollwein H, Schams D. Regulation of corpus luteum development and maintenance: specific roles of angiogenesis and action of prostaglandin F2alpha. Soc Reprod Fertil Suppl 2010; 67:289–304.spa
dcterms.referencesZalman Y, Klipper E, Farberov S, Mondal M, Wee G, Folger JK, Smith GW, Meidan R. Regulation of angiogenesis-related prostaglandin F2alpha-induced genes in the bovine corpus luteum. Biol Reprod 2012; 86:1–10.spa
dc.identifier.doi10.1093/biolre/iox183
dc.publisher.placeEstados Unidosspa
dc.relation.citationeditionVol. 98, No. 4 (2018)spa
dc.relation.citationendpage479spa
dc.relation.citationissue4 (2018)spa
dc.relation.citationstartpage465spa
dc.relation.citationvolume98spa
dc.relation.citesJulian C Ochoa, Francisco Peñagaricano, Giovanni M Baez, Leonardo F Melo, Jessica C L Motta, Alvaro Garcia-Guerra, Rina Meidan, João C Pinheiro Ferreira, Roberto Sartori, Milo C Wiltbank, Mechanisms for rescue of corpus luteum during pregnancy: gene expression in bovine corpus luteum following intrauterine pulses of prostaglandins E1 and F2α, Biology of Reproduction, Volume 98, Issue 4, April 2018, Pages 465–479, https://doi.org/10.1093/biolre/iox183
dc.relation.ispartofjournalBiology of Reproductionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalCorpus luteumeng
dc.subject.proposalluteolysiseng
dc.subject.proposalprostaglandin F2αeng
dc.subject.proposalprostaglandin E1eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem