Mostrar el registro sencillo del ítem


Thermodynamic modeling of a Brayton cycle hybrid solar thermal plant in Colombia

dc.contributor.authorMoreno Gamboa, Faustino
dc.contributor.authorNieto-Londoño, César
dc.date.accessioned2021-10-25T15:08:16Z
dc.date.available2021-10-25T15:08:16Z
dc.date.issued2018-12-18
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/395
dc.description.abstractIntroducción: Actualmente en Colombia, existe gran interés por la aplicación de energías renovables y la diversificación de la matriz energética. Por lo tanto, en el presente trabajo se muestran los resultados de la simulación de una planta solar térmica hibrida de ciclo Brayton cerrado en Colombia, que recibe calor de un sistema de concentración de torre central y heliostatos. El recurso solar se estima por un modelo horario, adicionalmente cuenta con una cámara de combustión que utiliza gas natural como combustible, la cual garantiza la estabilidad del calor suministrado a la planta. La ubicación de la planta se selecciona en función de la radiación global y difusa media diaria mensual, y adicionalmente, se realiza una simulación de los principales parámetros de operación, optimizando la potencia y el rendimiento global en función de la relación de presión. Por último, se realiza un análisis exergético de la planta, especialmente de los componentes afectados por la variación de la radiación en el día. Objetivo: Evaluar una planta solar térmica de concentración de ciclo Brayton cerrado, desde el punto de vista energético y exegético bajo las condiciones ambientales de Colombia. Metodología: Integrar en lenguaje modélica, por medio de un compilador Dymola un modelo de recurso solar, un modelo energético y un modelo exergético aplicado a las condiciones ambientales de Colombia. Resultados: Se presenta el análisis correspondiente a la evolución de los principales parámetros de operación de la planta a lo largo del día, la variación del rendimiento y la potencia en función de la relación de presiones. Conclusiones: Es viable técnicamente la operación de una planta solar térmica de concentración de ciclo Brayton en algunos lugares de Colombia, dado el recurso solar disponible y el ahorro de combustible que genera a pesar del detrimento del rendimiento energético y exergético.spa
dc.description.abstractIntroduction− Actually in Colombia, there is great inter-est in the application of renewable energy and the diversi-fication of the energy matrix. Therefore, in this work, are presented the results of the simulation of a hybrid solar thermal plant of closed Brayton cycle in Colombia, that re-ceives heat from a concentration system of central tower and heliostats. The solar resource is estimated by a time model validated initially, additionally with a combustion chamber that uses natural gas as fuel, which guarantees the stability of the heat supplied to the plant. The location of the plant is selected based on the global and diffuse average monthly radiation per day, and additionally, a simulation of the main operating parameters is carried out, optimizing the power and overall performance as a function of the pressure ratio. Finally, an exergy analysis of the plant is developed, especially of the components affected by the variation of the radiation during the day. Objective−Evaluate a thermal solar plant of closed Brayton cycle concentration, through an energetic and exegetical analysis under the environmental conditions of Colombia. Methodology−Integrate a model of solar resource, an energetic model and an exergy model applied to the envi-ronmental conditions of Colombia in model language in a Dymola compiler. Results− The evolution of the main operating parameters of the plant throughout the day, the variation of the perfor-mance and the power depending on the pressure ratio are presented and analyzed. Conclusions−It is technically feasible the operation of a solar thermal plant of concentration of Brayton cycle in some places of Colombia, given the available solar resource and the fuel saving that it generates despite the detriment of the energetic and exegetical performance.eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherINGE CUCspa
dc.relation.ispartofINGE CUC
dc.rightsThe author; licensee Universidad de la Costa - CUC. INGE CUC vol. 14 no. 2, pp.126-136. Julio - Diciembre, 2018Barranquilla. ISSN 0122-6517 Impreso, ISSN 2382-4700 Onlineeng
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1849spa
dc.titleModelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombiaspa
dc.titleThermodynamic modeling of a Brayton cycle hybrid solar thermal plant in Colombiaeng
dc.typeArtículo de revistaspa
dcterms.referencesS. Kalogirou, Solar Engineering Processes and Systems, San Diego: Academic Press Elsevier, 2009.spa
dcterms.referencesREN21, Steering Committee, Renewable Energy Policy Network for the 21st Century, Renewable 2016 energy Status Report, Paris, 2016.spa
dcterms.referencesY . Goswami, Principles of Solar Engineering, Boca Raton, USA: CRC Press, 2015.spa
dcterms.referencesB. Liu y R. Jordan, “The Interrelationship and Characteristic Distribution of Direct, Diffuse ant Total Solar Radiation”, Solar Energy, vol. 4, pp. 1-12, 1960. https://doi.org/10.1016/0038-092X(60)90062-1spa
dcterms.referencesM. Collares-Pereira y A. Rabl, “Hourly Diffuse Fraction Correlation at a Tropical Location”, Solar Energy, vol. 53, pp. 505-510, 1994. https://doi.org/10.1016/0038-092X(94)90130-Tspa
dcterms.referencesC. Gueymard, “Prediction and Performance Assessment of Mean Hourly Global Radiation”, Solar Energy, vol. 68, pp. 285-303, 2000. https://doi.org/10.1016/S0038-092X(99)00070-5spa
dcterms.referencesW. Le Roux, T. Bello-Ochende y J. Meyer, “A review on the Thermodynamic Optimization and Modelling of the Solar Thermal Brayton Cycle”, Renewable and Sustainable Energy Reviews, vol. 28, pp. 677-690, 2013. https://doi.org/10.1016/j.rser.2013.08.053spa
dcterms.referencesCSP Today, Concentrated Solar Power Market Report 2014, Business Intelligence Ltd, London, 2015.spa
dcterms.referencesC. Ho y B. Iverson, “A Review of High-Temperature Central Receiver Design for Concentrating Solar Power”, Renewable and Sustainable Energy Reviews, vol. 29, pp. 835-846, 2014. https://doi.org/10.1016/j.rser.2013.08.099spa
dcterms.referencesA. Avila-Martin, J. Fernandez-Reche y F. Tellez, “Evaluation of the Potential of Central Receiver Solar Power Plants”, Applied Energy, vol. 112, pp. 274-288, 2013. https://doi.org/10.1016/j.apenergy.2013.05.049spa
dcterms.referencesF. Collado y J. Guallar, “A Review of Optimized Design Layouts for Solar Power Tower Plants With Campo Code”, Renewable and Sustainable Energy Reviews, vol. 20, pp. 142-145, 2015. https://doi.org/10.1016/j.rser.2012.11.076spa
dcterms.referencesY . Zhang, B. Lin y J. Chen, “Optimum Performance Characteristics of an Irreversible Solar-Driven Brayton Heat Engine at the Maximum Overall Efficiency”, Renewable Energy, vol. 32, pp. 856-867, 2007. https://doi.org/10.1016/j.renene.2006.02.008spa
dcterms.referencesR. Kehlhofer, F. Hannemann y F. Stirnimann, Combined Cycle Gas and Steam Turbine Power Plants, Tusla. Oklahoma, USA: PennWall Corporation, 2009.spa
dcterms.referencesL. Wu, G. Lin y J. Chen, “Parametric Optimization of a Solar-driven Braysson Heat Engine with Variable Heat Capacity of the Working Fluid and Radiation Convective Losses,” Renewable Energy, vol. 35, pp. 95-100, 2010. https://doi.org/10.1016/j.renene.2009.07.015spa
dcterms.referencesS. Sánchez, Modelización, Análisis y Optimización “Termodinámica de Plantas de Potencia Multietapas Tipo Brayton. Aplicación a Centrales Termosolares”, Tesis Doctoral, Universidad de Salamanca, Salamanca, 2012.spa
dcterms.referencesS. Sanchez, A. Medina y A. Calvo Hernandez, “Thermodynamic Model and Optimization of a Multi-Step Irreversible Brayton Cycle”, Energy Conversion and Management, vol. 51, pp. 2134-2143, 2010. https://doi.org/10.1016/j.enconman.2010.03.006spa
dcterms.referencesD. Olivenza-Leon, A. Medina y A. Calvo Hernández, “Thermodynamic Modelling of a Hybrid Solar Gas Turbine”, Energy Conversion and Management, vol. 93, pp. 435-447, 2015. https://doi.org/10.1016/j.enconman.2015.01.027spa
dcterms.referencesM. J. Santos, R. Mechan, A. Medina y A. Calvo Hernandez, “Seasonal Thermodynamic Prediction of the Performance of Hybrid Solar Gas-Turbine”, Energy Conversion and Management, vol. 115, pp. 80-102, 2016. https://doi.org/10.1016/j.enconman.2016.02.019spa
dcterms.referencesW. LeRoux, T. Bello-Ochende y J. Meyer, “The Efficiency of an Open-Cavity Tubular Solar Receiver for a Small-Scale Solar Thermal Brayton Cycle”, Energy Conversion and Management, vol. 84, pp. 457-470, 2014. https://doi.org/10.1016/j.enconman.2014.04.048spa
dcterms.referencesC. Xu, Z. Wang y F. Sun, “Energy and Exergy Analysis of Solar Power Plants”, Applied Thermal Engineering, vol. 31, pp. 3904 - 3913, 2011. https://doi.org/10.1016/j.applthermaleng.2011.07.038spa
dcterms.referencesV. Zare y M. Hasanzadeh, “Energy and Exergy Analysis of Closed Brayton Cycle Combined for Solar Tower Plant”, Energy Conversion and Management, vol. 128, pp. 227 - 237, 2016. https://doi.org/10.1016/j.enconman.2016.09.080spa
dcterms.referencesR. Vasquez Padilla, R. Benito y W. Stein, “An Exergy Analysis of Recompression Supercritical CO2 Cycles with Reheating”, Energy Procedia, vol. 69, pp. 1181 - 1191, 2015. https://doi.org/10.1016/j.egypro.2015.03.201spa
dcterms.referencesW. Xiaohe, L. Quibin y B. Zhang, “Thermodynamic Analysis of the Cascade Supercritical CO2 Cycle Integrated with Solar and Biomass”, Energy Procedia, vol. 105, pp. 445 - 452, 2017. https://doi.org/10.1016/j.egypro.2017.03.339spa
dcterms.referencesNational Aeronautics and Space Administration, “NASA,” [En línea]. Available: https://eosweb.larc.nasa.gov/sse/. [Último acceso: 26 11 2017].spa
dcterms.referencesJ. Cenguel y M. Boles, Termodinámica, Ciudad de México: McGraw Hill, 2011.spa
dcterms.referencesK. Wark y D. Richards, Termodinámica, Madrid: Mc-Graw Hill, 2001.spa
dcterms.referencesJ. Duffie y W. Beckman, Solar Engineering of Thermal Process, New Jersey: John Wiley and Sons, 2006.spa
dcterms.referencesN. Jubeh, “Exergy Analysis and Second Law Efficiency of Regenerative Brayton Cycle Isothermal Heat Addition”, Entropy, vol. 3, pp. 172 -187, 2005. https://doi.org/10.3390/e7030172spa
dcterms.referencesJ. Parrott, “Theoretical Upper Limit to the Conversion Efficiency of Solar Energy”, Solar Energy, vol. 21, pp. 227 - 239, 1978. https://doi.org/10.1016/0038-092X(78)90025-7spa
dcterms.referencesY. Wanxiang, L. Zhengrong y X. Tongbin, “New Descomposition Models to Estimate Hourly Global Solar Radiation from the Daily Value”, Solar Energy, vol. 120, pp. 87 - 99, 2015. https://doi.org/10.1016/j.solener.2015.05.038spa
dcterms.referencesR. Mejdoul y M. Taqi, “The Mean Hourly Global Radiation Prediction Models Investigation in Two Different Climate Regions in Morocco”, International Journal of Renewable Energy, vol. 2, nº 4, 2012.spa
dcterms.referencesW. Wan Nik, M. Ibrahim y K. Samo, “Monthly Mean Hourly Global Solar Radiation Estimation”, Solar Energy, vol. 86, pp. 379 - 387, 2012. https://doi.org/10.1016/j.solener.2011.10.008spa
dc.coverage.countryColombia
dc.identifier.doihttps://doi.org/10.17981/ingecuc.14.2.2018.12
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.14 No.2.(2018)spa
dc.relation.citationendpage136spa
dc.relation.citationissue2(2018)spa
dc.relation.citationstartpage126spa
dc.relation.citationvolume14spa
dc.relation.citesMoreno Gamboa, F., & Nieto Londoño, C. (2018). Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia. INGE CUC, 14(2), 126-136. https://doi.org/10.17981/ingecuc.14.2.2018.12
dc.relation.ispartofjournalINGE CUCspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalEnergía Solar Térmicaspa
dc.subject.proposalSolar Thermal Energyeng
dc.subject.proposalConcentración Solarspa
dc.subject.proposalSolar Concentrationeng
dc.subject.proposalCiclo Brayton Cerradospa
dc.subject.proposalClosed Brayton Cycleeng
dc.subject.proposalRadiación solarspa
dc.subject.proposalSolar Radiationeng
dc.subject.proposalDestrucción de exergíaspa
dc.subject.proposalExergy destructioneng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem