Mostrar el registro sencillo del ítem
Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods
dc.contributor.author | Moreno Gamboa, Faustino | |
dc.contributor.author | Escudero-Atehortua, Ana | |
dc.contributor.author | Nieto-Londoño, César | |
dc.date.accessioned | 2021-10-15T16:44:20Z | |
dc.date.available | 2021-10-15T16:44:20Z | |
dc.date.issued | 2020-12-01 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/319 | |
dc.description.abstract | Hydro and thermal generation power systems dominate the Colombian electricity sector. In 2017, Colombia installed electrical generation capacity was 16.8 GW. Renewable energy sources represent at least 85% of the total generation, being hydro the principal source. Several alternatives had been evaluated through the years to improve the Colombian energy matrix and capacity, including solar photovoltaic and wind plants; despite that, no consensus about the appropriate solution in terms of the available resource, energy demand, and energy mix has been attained. Thermosolar power plants arise as an alternative to produce energy in sites where nearly constant solar irradiance throughout the year is available, which is the case for most Colombian cities. This work concerned the evaluation of a single-stage hybrid Central Solar Power (CSP) plant at a location on the Caribbean Colombian coast. The study is focused on establishing the effect of local environmental conditions (ambient temperature and solar resource availability), as well as some operational cycle parameters (heat exchanger effectiveness and the system pressure ratio) on the CSP plant performance. Additionally, site emplacement conditions, i.e., proximity to the power grid, presence of conventional thermal power plants, proximity to principal cities, and availability of natural gas), are also considered to attain the factors that might constrain the plant optimal operating conditions. The CSP plant and the Direct Normal Irradiance (DNI) model results obtained fitted in good agreement the experimental data from the literature used for validation. Results have shown a global plant efficiency of 35% without solar resource which is reduced to 30% when solar contribution attains its maximum value at midday. Additionally, fuel-saving per day varies between 9.21% and 6.3% during the months of maximum and minimum global radiation, respectively. Finally, that the combustion chamber, its associated heat exchanger and the one that is in direct exchange with the surroundings, are the components with the most exergy destruction, as expected. From the above, it is sensible to explore alternatives regarding different working fluids that could be used in lower temperature cycles and other applications for heat recovery. | eng |
dc.format.extent | 25 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.relation.ispartof | Thermal Science and Engineering Progress | |
dc.rights | © 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).T | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.source | https://www.sciencedirect.com/science/article/pii/S2451904920301992 | spa |
dc.title | Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods | eng |
dc.type | Artículo de revista | spa |
dcterms.references | DNP, Energy demand situation in Colombia, Tech. rep., Departamento Nacional de Planeación, 2017. | spa |
dcterms.references | UPME, Plan energético nacional 2020–2050, Tech. rep., Unidad de Planeación Minero Energética, 2019. | spa |
dcterms.references | DNP, Energy supply situation in Colombia, Tech. rep., Departamento Nacional de Planeación, 2017. | spa |
dcterms.references | UPME, Plan de expansión de referencia generación transmisión 2015–2029, Tech. rep., Unidad de Planeación Minero Energética, 2015. | spa |
dcterms.references | DNP, Green growth policy proposals, Tech. rep., Departamento Nacional de Planeación, 2018. | spa |
dcterms.references | REN21, Renewables 2018 global status report. a comprehensive annual overview of the state of renewable energy, Tech. Rep. GSR2018, REN21 Secretariat, Paris, 2018. | spa |
dcterms.references | T. Bouhal, Y. Agrouaz, T. Kousksou, A. Allouhi, T.E. Rhafiki, A. Jamil, M. Bakkas, Technical feasibility of a sustainable concentrated solar power in morocco through an energy analysis, Renew. Sustain. Energy Rev. 81 (2018) 1087–1095. | spa |
dcterms.references | M.M. Rafique, H.M.S. Bahaidarah Thermo-economic and environmental feasibility of a solar power plant as a renewable and green source of electrification Int. J. Green Energy, 16 (15) (2019), pp. 1577-1590 | spa |
dcterms.references | M.Z. Jacobson, M.A. Delucchi Providing all global energy with wind, water, and solar power, part i: technologies, energy resources, quantities and areas of infrastructure, and materials Energy Policy, 39 (3) (2011), pp. 1154-1169 | spa |
dcterms.references | W. Le Roux, T. Bello-Ochende, J. Meyer A review on the thermodynamic optimisation and modelling of the solar thermal brayton cycle Renew. Sustain. Energy Rev., 28 (2013), pp. 677-690 | spa |
dcterms.references | L. Ding, A. Akbarzadeh, B. Singh, M. Remeli Feasibility of electrical power generation using thermoelectric modules via solar pond heat extraction Energy Convers. Manage., 135 (2017), pp. 74-83 | spa |
dcterms.references | I. Elsayed, Y. Nishi A feasibility study on power generation from solar thermal wind tower: inclusive impact assessment concerning environmental and economic costs Energies, 11 (11) (2018), p. 3181 | spa |
dcterms.references | S. Kirmani, M. Jamil, I. Akhtar Economic feasibility of hybrid energy generation with reduced carbon emission IET Renew. Power Gen., 12 (8) (2018), pp. 934-942 | spa |
dcterms.references | M. Santos, C. Miguel-Barbero, R. Merchán, A. Medina, A. Calvo Hernández Roads to improve the performance of hybrid thermosolar gas turbine power plants: Working fluids and multi-stage configurations Energy Convers. Manage., 165 (2018), pp. 578-592 | spa |
dcterms.references | N. Suresh, N. Thirumalai, S. Dasappa Modeling and analysis of solar thermal and biomass hybrid power plants Appl. Therm. Eng., 160 (2019), p. 114121 | spa |
dcterms.references | N. Taylor, Solar thermal electricity: technology development report, Tech. rep. | spa |
dcterms.references | H. Jouhara, A. Żabnieńska Góra, N. Khordehgah, D. Ahmad, T. Lipinski Latent thermal energy storage technologies and applications: a review Int. J. Thermofluids (2020), p. 100039 | spa |
dcterms.references | H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, S.A. Tassou Waste heat recovery technologies and applications Therm. Sci. Eng. Prog., 6 (2018), pp. 268-289 | spa |
dcterms.references | Z. Liu, Y. Yan, R. Fu, M. Alsaady Enhancement of solar energy collection with magnetic nanofluids Therm. Sci. Eng. Prog., 8 (2018), pp. 130-135 | spa |
dcterms.references | E. Bernardos, I. López, J. Rodríguez, A. Abánades Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: brayton cycles Energy Policy, 62 (2013), pp. 99-106 | spa |
dcterms.references | C. Soares Gas Turbines: A Handbook of Air, Land and Sea Applications Butterworth-Heinemann (2012) | spa |
dcterms.references | M. Jamel, A.A. Rahman, A. Shamsuddin, Advances in the integration of solar thermal energy with conventional and non-conventional power plants, Renew. Sustain. Energy Rev. 20 (2013) 71–81. | spa |
dcterms.references | M.T. Dunham, B.D. Iverson High-efficiency thermodynamic power cycles for concentrated solar power systems Renew. Sustain. Energy Rev., 30 (2014), pp. 758-770 | spa |
dcterms.references | J.W. Teets, J.M. Teets, A 150Kw Integrated Solar Combined Cycle (ISCC) power plant volume 8: energy systems: analysis, thermodynamics and sustainability, Sustain. Prod. Process. (2008) 321–331. | spa |
dcterms.references | M.U. Sajid, Y. Bicer Thermodynamic assessment of chemical looping combustion and solar thermal methane cracking-based integrated system for green ammonia production Therm. Sci. Eng. Prog., 19 (2020), p. 100588 | spa |
dcterms.references | H. Nakatani, T. Osada Development of a concentrated solar power generation system with a hot-air turbine Mitsubishi Heavy..., 49 (1) (2012), pp. 1-5 | spa |
dcterms.references | S. Kim, M.S. Kim, M. Kim Parametric study and optimisation of closed brayton power cycle considering the charge amount of working fluid Energy, 198 (2020), p. 117353 | spa |
dcterms.references | F. Calise, M.D. d’Accadia, L. Libertini, M. Vicidomini Thermoeconomic analysis of an integrated solar combined cycle power plant Energy Convers. Manage., 171 (2018), pp. 1038-1051 | spa |
dcterms.references | J. Spelling, D. Favrat, A. Martin, G. Augsburger, Thermoeconomic optimization of a combined-cycle solar tower power plant, Energy 41 (1) (2012) 113–120, 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2010. | spa |
dcterms.references | I.A. Ehtiwesh, M.C. Coelho, A.C. Sousa Exergetic and environmental life cycle assessment analysis of concentrated solar power plants Renew. Sustain. Energy Rev., 56 (2016), pp. 145-155 | spa |
dcterms.references | R. Merchán, M. Santos, I. Reyes-Ramírez, A. Medina, A. Calvo Hernández Modeling hybrid solar gas-turbine power plants: thermodynamic projection of annual performance and emissions Energy Convers. Manage., 134 (2017), pp. 314-326 | spa |
dcterms.references | R. Merchán, M. Santos, I. Heras, J. Gonzalez-Ayala, A. Medina, A.C. Hernández On-design pre-optimization and off-design analysis of hybrid brayton thermosolar tower power plants for different fluids and plant configurations Renew. Sustain. Energy Rev., 119 (2020), p. 109590 | spa |
dcterms.references | D. Olivenza-León, A. Medina, A. Calvo Hernández Thermodynamic modeling of a hybrid solar gas-turbine power plant Energy Convers. Manage., 93 (2015), pp. 435-447 | spa |
dcterms.references | O. Behar Solar thermal power plants – a review of configurations and performance comparison Renew. Sustain. Energy Rev., 92 (2018), pp. 608-627 | spa |
dcterms.references | M. Santos, R. Merchán, A. Medina, A. Calvo Hernández Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant Energy Convers. Manage., 115 (2016), pp. 89-102 | spa |
dcterms.references | S. Sánchez, Modelización, análisis y optimización termodinámica de plantas de potencia multietapa tipo Brayton. Aplicación a centrales termosolares, Ph.D. thesis, Universidad de Salamanca, 2012. | spa |
dcterms.references | J. Kim, J.-S. Kim, W. Stein Simplified heat loss model for central tower solar receiver Solar Energy, 116 (2015), pp. 314-322 | spa |
dcterms.references | Y. Zhang, B. Lin, J. Chen Optimum performance characteristics of an irreversible solar-driven brayton heat engine at the maximum overall efficiency Renew. Energy, 32 (5) (2007), pp. 856-867 | spa |
dcterms.references | B. Sahin, A. Kodal, T. Yilmaz, H. Yavuz Maximum power density analysis of an irreversible joule - brayton engine J. Phys. D Appl. Phys., 29 (5) (1996), pp. 1162-1167 | spa |
dcterms.references | V. Ferraro, V. Marinelli, An evaluation of thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines with open joule–brayton cycle, Energy 44 (1) (2012) 862–869, Integration and Energy System Engineering, European Symposium on Computer-Aided Process Engineering 2011. | spa |
dcterms.references | Z. Liao, A. Faghri Thermal analysis of a heat pipe solar central receiver for concentrated solar power tower Appl. Therm. Eng., 102 (2016), pp. 952-960 | spa |
dcterms.references | V. Ferraro, F. Imineo, V. Marinelli An improved model to evaluate thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines in open joule–brayton cycle Energy, 53 (2013), pp. 323-331 | spa |
dcterms.references | C.K. Ho, B.D. Iverson Review of high-temperature central receiver designs for concentrating solar power Renew. Sustain. Energy Rev., 29 (2014), pp. 835-846 | spa |
dcterms.references | W. Le Roux, T. Bello-Ochende, J. Meyer Operating conditions of an open and direct solar thermal brayton cycle with optimised cavity receiver and recuperator Energy, 36 (10) (2011), pp. 6027-6036 | spa |
dcterms.references | C. Tang, H. Feng, L. Chen, W. Wang Power density analysis and multi-objective optimisation for a modified endoreversible simple closed brayton cycle with one isothermal heating process Energy Rep., 6 (2020), pp. 1648-1657 | spa |
dcterms.references | J.H. Park, H.S. Park, J.G. Kwon, T.H. Kim, M.H. Kim Optimization and thermodynamic analysis of supercritical CO2 brayton recompression cycle for various small modular reactors Energy, 160 (2018), pp. 520-535 | spa |
dcterms.references | D. Thanganadar, F. Asfand, K. Patchigolla Thermal performance and economic analysis of supercritical carbon dioxide cycles in combined cycle power plant Appl. Energy, 255 (2019) 113826 | spa |
dcterms.references | M. Ashouri, M.H. Ahmadi, S.M. Pourkiaei, F.R. Astaraei, R. Ghasempour, T. Ming, J.H. Hemati Exergy and exergo-economic analysis and optimization of a solar double pressure organic rankine cycle Therm. Sci. Eng. Prog., 6 (2018), pp. 72-86 | spa |
dcterms.references | H. Zhai, Y. Dai, J. Wu, R. Wang Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas Appl. Energy, 86 (9) (2009), pp. 1395-1404 | spa |
dcterms.references | V. Zare, M. Hasanzadeh Energy and exergy analysis of a closed brayton cycle-based combined cycle for solar power tower plants Energy Convers. Manage., 128 (2016), pp. 227-237 | spa |
dcterms.references | M. Atif, F.A. Al-Sulaiman Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations Renew. Sustain. Energy Rev., 68 (2017), pp. 153-167 | spa |
dcterms.references | M.H. Ahmadi, M. Mehrpooya, S. Abbasi, F. Pourfayaz, J.C. Bruno Thermo-economic analysis and multi-objective optimization of a transcritical CO2 power cycle driven by solar energy and lng cold recovery Therm. Sci. Eng. Prog., 4 (2017), pp. 185-196 | spa |
dcterms.references | T. Yue, N. Lior Thermal hybrid power systems using multiple heat sources of different temperature: thermodynamic analysis for brayton cycles Energy, 165 (2018), pp. 639-665 | spa |
dcterms.references | M. Abid, M.S. Khan, T.A.H. Ratlamwala, Comparative energy, exergy and exergo-economic analysis of solar driven supercritical carbon dioxide power and hydrogen generation cycle, Int. J. Hydrogen Energy 45 (9) (2020) 5653–5667, iEEES-10 – International Exergy, Energy and Environment Symposium. | spa |
dcterms.references | Modelica, 2019. http://www.modelica.org. | spa |
dcterms.references | DYMOLA Systems Engineering, 2019. URL http://www.dynasim.se. | spa |
dcterms.references | C. Gueymard Prediction and performance assessment of mean hourly global radiation Solar Energy, 68 (3) (2000), pp. 285-303 | spa |
dcterms.references | D.Y. Goswami Principles of Solar Engineering (third ed.), CRC Press (2015) | spa |
dcterms.references | B.Y. Liu, R.C. Jordan The interrelationship and characteristic distribution of direct, diffuse and total solar radiation Solar Energy, 4 (3) (1960), pp. 1-19 | spa |
dcterms.references | R. Mejdoul, M. Taqi The mean hourly global radiation prediction models investigation in two different climate regions in Morocco Int. J. Renew. Energy Res., 2 (4) (2012), pp. 608-617 | spa |
dcterms.references | W. Yao, Z. Li, T. Xiu, Y. Lu, X. Li New decomposition models to estimate hourly global solar radiation from the daily value Solar Energy, 120 (2015), pp. 87-99 | spa |
dcterms.references | J. Chandrasekaran, S. Kumar Hourly diffuse fraction correlation at a tropical location Solar Energy, 53 (6) (1994), pp. 505-510 | spa |
dcterms.references | N. Aeronautics, S. Administration, Power Data Access Viewer (2018). https://power.larc.nasa.gov/data-access-viewer/. | spa |
dcterms.references | M. Romero, R. Buck, J.E. Pacheco An update on solar central receiver systems, projects, and technologies J. Solar Energy Eng., 124 (2) (2002), pp. 98-108 | spa |
dcterms.references | J.A. Duffie, W.A. Beckman Solar Engineering of Thermal Processes John Wiley & Sons (2013) | spa |
dcterms.references | W. Wang, L. Chen, F. Sun, C. Wu Performance analysis for an irreversible variable temperature heat reservoir closed intercooled regenerated brayton cycle Energy Convers. Manage., 44 (17) (2003), pp. 2713-2732 | spa |
dcterms.references | Y. Çengel, M. Boles Thermodynamic: An Engineering Approach (eighth ed.), McGraw-Hill (2015) | spa |
dcterms.references | D. Kulshreshtha, S. Mehta, Exergy analysis of a regenerative micro gas turbine engine, in: ICFD 10: Tenth International Congress of Fluid Dynamics, 2010. | spa |
dcterms.references | J. Parrott Theoretical upper limit to the conversion efficiency of solar energy Solar Energy, 21 (3) (1978), pp. 227-229 | spa |
dcterms.references | R. Petela Exergy of undiluted thermal radiation Solar Energy, 74 (6) (2003), pp. 469-488 | spa |
dcterms.references | Meteosevilla, 2017. URL www.meteosevilla.com. | spa |
dcterms.references | E. Ramírez-Cerpa, M. Acosta-Coll, J. Vélez-Zapata, Análisis de condiciones climatológicas de precipitaciones de corto plazo en zonas urbanas: caso de estudio Barranquilla, Colombia, Idesia (Arica) 35 (ahead) (2017) 0–0. doi:10.4067/S0718-34292017005000023. | spa |
dcterms.references | R. Korzynietz, J. Brioso, A. del Río, M. Quero, M. Gallas, R. Uhlig, M. Ebert, R. Buck, D. Teraji, Solugas – comprehensive analysis of the solar hybrid brayton plant, Solar Energy 135 (2016) 578–589. | spa |
dcterms.references | P.G. Package, Mercury 50 – Power Generation Packages, Solar Turbines, 2019. https://www.solarturbines.com/en_US/products/power-generation-packages/mercury-50.html. | spa |
dcterms.references | . Wu, G. Lin, J. Chen Parametric optimization of a solar-driven braysson heat engine with variable heat capacity of the working fluid and radiation–convection heat losses Renew. Energy, 35 (1) (2010), pp. 95-100 | spa |
dcterms.references | A. Romier, Small gas turbine technology, Appl. Therm. Eng. 24 (11) (2004) 1709–1723, Industrial Gas Turbine Technologies. | spa |
dcterms.references | G. Barigozzi, A. Perdichizzi, C. Gritti, I. Guaiatelli Techno-economic analysis of gas turbine inlet air cooling for combined cycle power plant for different climatic conditions Appl. Therm. Eng., 82 (2015), pp. 57-67 | spa |
dcterms.references | P.E.B. de Mello, D.B. Monteiro, Thermodynamic study of an efgt (externally fired gas turbine) cycle with one detailed model for the ceramic heat exchanger, Energy 45 (1) (2012) 497–502, The 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy, ECOS 2011. | spa |
dcterms.references | T. Kotas The Exergy Method of Thermal Plant Analysis Butterworth-Heinemann (1985) | spa |
dc.contributor.corporatename | Thermal Science and Engineering Progress | spa |
dc.coverage.country | Colombia | |
dc.identifier.doi | https://doi.org/10.1016/j.tsep.2020.100679 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol.20 (2021) | spa |
dc.relation.citationendpage | 100704 | spa |
dc.relation.citationstartpage | 100679 | spa |
dc.relation.citationvolume | 20 | spa |
dc.relation.cites | Moreno-Gamboa, F., Escudero-Atehortua, A., & Nieto-Londoño, C. (2020). Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods. Thermal Science and Engineering Progress, 20, 100679. | |
dc.relation.ispartofjournal | Thermal Science and Engineering Progress | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | Thermosolar gas-turbine | eng |
dc.subject.proposal | Hybrid plants | eng |
dc.subject.proposal | Thermodynamic model | eng |
dc.subject.proposal | Variable solar irradiance | eng |
dc.subject.proposal | Global plant performance | eng |
dc.subject.proposal | Direct normal irradiance | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |