Show simple item record

dc.contributor.authorMoreno Gamboa, Faustino
dc.contributor.authorEscudero-Atehortua, Ana
dc.contributor.authorNieto-Londoño, César
dc.date.accessioned2021-10-15T16:44:20Z
dc.date.available2021-10-15T16:44:20Z
dc.date.issued2020-12-01
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/319
dc.description.abstractHydro and thermal generation power systems dominate the Colombian electricity sector. In 2017, Colombia installed electrical generation capacity was 16.8 GW. Renewable energy sources represent at least 85% of the total generation, being hydro the principal source. Several alternatives had been evaluated through the years to improve the Colombian energy matrix and capacity, including solar photovoltaic and wind plants; despite that, no consensus about the appropriate solution in terms of the available resource, energy demand, and energy mix has been attained. Thermosolar power plants arise as an alternative to produce energy in sites where nearly constant solar irradiance throughout the year is available, which is the case for most Colombian cities. This work concerned the evaluation of a single-stage hybrid Central Solar Power (CSP) plant at a location on the Caribbean Colombian coast. The study is focused on establishing the effect of local environmental conditions (ambient temperature and solar resource availability), as well as some operational cycle parameters (heat exchanger effectiveness and the system pressure ratio) on the CSP plant performance. Additionally, site emplacement conditions, i.e., proximity to the power grid, presence of conventional thermal power plants, proximity to principal cities, and availability of natural gas), are also considered to attain the factors that might constrain the plant optimal operating conditions. The CSP plant and the Direct Normal Irradiance (DNI) model results obtained fitted in good agreement the experimental data from the literature used for validation. Results have shown a global plant efficiency of 35% without solar resource which is reduced to 30% when solar contribution attains its maximum value at midday. Additionally, fuel-saving per day varies between 9.21% and 6.3% during the months of maximum and minimum global radiation, respectively. Finally, that the combustion chamber, its associated heat exchanger and the one that is in direct exchange with the surroundings, are the components with the most exergy destruction, as expected. From the above, it is sensible to explore alternatives regarding different working fluids that could be used in lower temperature cycles and other applications for heat recovery.eng
dc.format.extent25 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.relation.ispartofThermal Science and Engineering Progress
dc.rights© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Teng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2451904920301992spa
dc.titlePerformance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methodseng
dc.typeArtículo de revistaspa
dcterms.referencesDNP, Energy demand situation in Colombia, Tech. rep., Departamento Nacional de Planeación, 2017.spa
dcterms.referencesUPME, Plan energético nacional 2020–2050, Tech. rep., Unidad de Planeación Minero Energética, 2019.spa
dcterms.referencesDNP, Energy supply situation in Colombia, Tech. rep., Departamento Nacional de Planeación, 2017.spa
dcterms.referencesUPME, Plan de expansión de referencia generación transmisión 2015–2029, Tech. rep., Unidad de Planeación Minero Energética, 2015.spa
dcterms.referencesDNP, Green growth policy proposals, Tech. rep., Departamento Nacional de Planeación, 2018.spa
dcterms.referencesREN21, Renewables 2018 global status report. a comprehensive annual overview of the state of renewable energy, Tech. Rep. GSR2018, REN21 Secretariat, Paris, 2018.spa
dcterms.referencesT. Bouhal, Y. Agrouaz, T. Kousksou, A. Allouhi, T.E. Rhafiki, A. Jamil, M. Bakkas, Technical feasibility of a sustainable concentrated solar power in morocco through an energy analysis, Renew. Sustain. Energy Rev. 81 (2018) 1087–1095.spa
dcterms.referencesM.M. Rafique, H.M.S. Bahaidarah Thermo-economic and environmental feasibility of a solar power plant as a renewable and green source of electrification Int. J. Green Energy, 16 (15) (2019), pp. 1577-1590spa
dcterms.referencesM.Z. Jacobson, M.A. Delucchi Providing all global energy with wind, water, and solar power, part i: technologies, energy resources, quantities and areas of infrastructure, and materials Energy Policy, 39 (3) (2011), pp. 1154-1169spa
dcterms.referencesW. Le Roux, T. Bello-Ochende, J. Meyer A review on the thermodynamic optimisation and modelling of the solar thermal brayton cycle Renew. Sustain. Energy Rev., 28 (2013), pp. 677-690spa
dcterms.referencesL. Ding, A. Akbarzadeh, B. Singh, M. Remeli Feasibility of electrical power generation using thermoelectric modules via solar pond heat extraction Energy Convers. Manage., 135 (2017), pp. 74-83spa
dcterms.referencesI. Elsayed, Y. Nishi A feasibility study on power generation from solar thermal wind tower: inclusive impact assessment concerning environmental and economic costs Energies, 11 (11) (2018), p. 3181spa
dcterms.referencesS. Kirmani, M. Jamil, I. Akhtar Economic feasibility of hybrid energy generation with reduced carbon emission IET Renew. Power Gen., 12 (8) (2018), pp. 934-942spa
dcterms.referencesM. Santos, C. Miguel-Barbero, R. Merchán, A. Medina, A. Calvo Hernández Roads to improve the performance of hybrid thermosolar gas turbine power plants: Working fluids and multi-stage configurations Energy Convers. Manage., 165 (2018), pp. 578-592spa
dcterms.referencesN. Suresh, N. Thirumalai, S. Dasappa Modeling and analysis of solar thermal and biomass hybrid power plants Appl. Therm. Eng., 160 (2019), p. 114121spa
dcterms.referencesN. Taylor, Solar thermal electricity: technology development report, Tech. rep.spa
dcterms.referencesH. Jouhara, A. Żabnieńska Góra, N. Khordehgah, D. Ahmad, T. Lipinski Latent thermal energy storage technologies and applications: a review Int. J. Thermofluids (2020), p. 100039spa
dcterms.referencesH. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, S.A. Tassou Waste heat recovery technologies and applications Therm. Sci. Eng. Prog., 6 (2018), pp. 268-289spa
dcterms.referencesZ. Liu, Y. Yan, R. Fu, M. Alsaady Enhancement of solar energy collection with magnetic nanofluids Therm. Sci. Eng. Prog., 8 (2018), pp. 130-135spa
dcterms.referencesE. Bernardos, I. López, J. Rodríguez, A. Abánades Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: brayton cycles Energy Policy, 62 (2013), pp. 99-106spa
dcterms.referencesC. Soares Gas Turbines: A Handbook of Air, Land and Sea Applications Butterworth-Heinemann (2012)spa
dcterms.referencesM. Jamel, A.A. Rahman, A. Shamsuddin, Advances in the integration of solar thermal energy with conventional and non-conventional power plants, Renew. Sustain. Energy Rev. 20 (2013) 71–81.spa
dcterms.referencesM.T. Dunham, B.D. Iverson High-efficiency thermodynamic power cycles for concentrated solar power systems Renew. Sustain. Energy Rev., 30 (2014), pp. 758-770spa
dcterms.referencesJ.W. Teets, J.M. Teets, A 150Kw Integrated Solar Combined Cycle (ISCC) power plant volume 8: energy systems: analysis, thermodynamics and sustainability, Sustain. Prod. Process. (2008) 321–331.spa
dcterms.referencesM.U. Sajid, Y. Bicer Thermodynamic assessment of chemical looping combustion and solar thermal methane cracking-based integrated system for green ammonia production Therm. Sci. Eng. Prog., 19 (2020), p. 100588spa
dcterms.referencesH. Nakatani, T. Osada Development of a concentrated solar power generation system with a hot-air turbine Mitsubishi Heavy..., 49 (1) (2012), pp. 1-5spa
dcterms.referencesS. Kim, M.S. Kim, M. Kim Parametric study and optimisation of closed brayton power cycle considering the charge amount of working fluid Energy, 198 (2020), p. 117353spa
dcterms.referencesF. Calise, M.D. d’Accadia, L. Libertini, M. Vicidomini Thermoeconomic analysis of an integrated solar combined cycle power plant Energy Convers. Manage., 171 (2018), pp. 1038-1051spa
dcterms.referencesJ. Spelling, D. Favrat, A. Martin, G. Augsburger, Thermoeconomic optimization of a combined-cycle solar tower power plant, Energy 41 (1) (2012) 113–120, 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2010.spa
dcterms.referencesI.A. Ehtiwesh, M.C. Coelho, A.C. Sousa Exergetic and environmental life cycle assessment analysis of concentrated solar power plants Renew. Sustain. Energy Rev., 56 (2016), pp. 145-155spa
dcterms.referencesR. Merchán, M. Santos, I. Reyes-Ramírez, A. Medina, A. Calvo Hernández Modeling hybrid solar gas-turbine power plants: thermodynamic projection of annual performance and emissions Energy Convers. Manage., 134 (2017), pp. 314-326spa
dcterms.referencesR. Merchán, M. Santos, I. Heras, J. Gonzalez-Ayala, A. Medina, A.C. Hernández On-design pre-optimization and off-design analysis of hybrid brayton thermosolar tower power plants for different fluids and plant configurations Renew. Sustain. Energy Rev., 119 (2020), p. 109590spa
dcterms.referencesD. Olivenza-León, A. Medina, A. Calvo Hernández Thermodynamic modeling of a hybrid solar gas-turbine power plant Energy Convers. Manage., 93 (2015), pp. 435-447spa
dcterms.referencesO. Behar Solar thermal power plants – a review of configurations and performance comparison Renew. Sustain. Energy Rev., 92 (2018), pp. 608-627spa
dcterms.referencesM. Santos, R. Merchán, A. Medina, A. Calvo Hernández Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant Energy Convers. Manage., 115 (2016), pp. 89-102spa
dcterms.referencesS. Sánchez, Modelización, análisis y optimización termodinámica de plantas de potencia multietapa tipo Brayton. Aplicación a centrales termosolares, Ph.D. thesis, Universidad de Salamanca, 2012.spa
dcterms.referencesJ. Kim, J.-S. Kim, W. Stein Simplified heat loss model for central tower solar receiver Solar Energy, 116 (2015), pp. 314-322spa
dcterms.referencesY. Zhang, B. Lin, J. Chen Optimum performance characteristics of an irreversible solar-driven brayton heat engine at the maximum overall efficiency Renew. Energy, 32 (5) (2007), pp. 856-867spa
dcterms.referencesB. Sahin, A. Kodal, T. Yilmaz, H. Yavuz Maximum power density analysis of an irreversible joule - brayton engine J. Phys. D Appl. Phys., 29 (5) (1996), pp. 1162-1167spa
dcterms.referencesV. Ferraro, V. Marinelli, An evaluation of thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines with open joule–brayton cycle, Energy 44 (1) (2012) 862–869, Integration and Energy System Engineering, European Symposium on Computer-Aided Process Engineering 2011.spa
dcterms.referencesZ. Liao, A. Faghri Thermal analysis of a heat pipe solar central receiver for concentrated solar power tower Appl. Therm. Eng., 102 (2016), pp. 952-960spa
dcterms.referencesV. Ferraro, F. Imineo, V. Marinelli An improved model to evaluate thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines in open joule–brayton cycle Energy, 53 (2013), pp. 323-331spa
dcterms.referencesC.K. Ho, B.D. Iverson Review of high-temperature central receiver designs for concentrating solar power Renew. Sustain. Energy Rev., 29 (2014), pp. 835-846spa
dcterms.referencesW. Le Roux, T. Bello-Ochende, J. Meyer Operating conditions of an open and direct solar thermal brayton cycle with optimised cavity receiver and recuperator Energy, 36 (10) (2011), pp. 6027-6036spa
dcterms.referencesC. Tang, H. Feng, L. Chen, W. Wang Power density analysis and multi-objective optimisation for a modified endoreversible simple closed brayton cycle with one isothermal heating process Energy Rep., 6 (2020), pp. 1648-1657spa
dcterms.referencesJ.H. Park, H.S. Park, J.G. Kwon, T.H. Kim, M.H. Kim Optimization and thermodynamic analysis of supercritical CO2 brayton recompression cycle for various small modular reactors Energy, 160 (2018), pp. 520-535spa
dcterms.referencesD. Thanganadar, F. Asfand, K. Patchigolla Thermal performance and economic analysis of supercritical carbon dioxide cycles in combined cycle power plant Appl. Energy, 255 (2019) 113826spa
dcterms.referencesM. Ashouri, M.H. Ahmadi, S.M. Pourkiaei, F.R. Astaraei, R. Ghasempour, T. Ming, J.H. Hemati Exergy and exergo-economic analysis and optimization of a solar double pressure organic rankine cycle Therm. Sci. Eng. Prog., 6 (2018), pp. 72-86spa
dcterms.referencesH. Zhai, Y. Dai, J. Wu, R. Wang Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas Appl. Energy, 86 (9) (2009), pp. 1395-1404spa
dcterms.referencesV. Zare, M. Hasanzadeh Energy and exergy analysis of a closed brayton cycle-based combined cycle for solar power tower plants Energy Convers. Manage., 128 (2016), pp. 227-237spa
dcterms.referencesM. Atif, F.A. Al-Sulaiman Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations Renew. Sustain. Energy Rev., 68 (2017), pp. 153-167spa
dcterms.referencesM.H. Ahmadi, M. Mehrpooya, S. Abbasi, F. Pourfayaz, J.C. Bruno Thermo-economic analysis and multi-objective optimization of a transcritical CO2 power cycle driven by solar energy and lng cold recovery Therm. Sci. Eng. Prog., 4 (2017), pp. 185-196spa
dcterms.referencesT. Yue, N. Lior Thermal hybrid power systems using multiple heat sources of different temperature: thermodynamic analysis for brayton cycles Energy, 165 (2018), pp. 639-665spa
dcterms.referencesM. Abid, M.S. Khan, T.A.H. Ratlamwala, Comparative energy, exergy and exergo-economic analysis of solar driven supercritical carbon dioxide power and hydrogen generation cycle, Int. J. Hydrogen Energy 45 (9) (2020) 5653–5667, iEEES-10 – International Exergy, Energy and Environment Symposium.spa
dcterms.referencesModelica, 2019. http://www.modelica.org.spa
dcterms.referencesDYMOLA Systems Engineering, 2019. URL http://www.dynasim.se.spa
dcterms.referencesC. Gueymard Prediction and performance assessment of mean hourly global radiation Solar Energy, 68 (3) (2000), pp. 285-303spa
dcterms.referencesD.Y. Goswami Principles of Solar Engineering (third ed.), CRC Press (2015)spa
dcterms.referencesB.Y. Liu, R.C. Jordan The interrelationship and characteristic distribution of direct, diffuse and total solar radiation Solar Energy, 4 (3) (1960), pp. 1-19spa
dcterms.referencesR. Mejdoul, M. Taqi The mean hourly global radiation prediction models investigation in two different climate regions in Morocco Int. J. Renew. Energy Res., 2 (4) (2012), pp. 608-617spa
dcterms.referencesW. Yao, Z. Li, T. Xiu, Y. Lu, X. Li New decomposition models to estimate hourly global solar radiation from the daily value Solar Energy, 120 (2015), pp. 87-99spa
dcterms.referencesJ. Chandrasekaran, S. Kumar Hourly diffuse fraction correlation at a tropical location Solar Energy, 53 (6) (1994), pp. 505-510spa
dcterms.referencesN. Aeronautics, S. Administration, Power Data Access Viewer (2018). https://power.larc.nasa.gov/data-access-viewer/.spa
dcterms.referencesM. Romero, R. Buck, J.E. Pacheco An update on solar central receiver systems, projects, and technologies J. Solar Energy Eng., 124 (2) (2002), pp. 98-108spa
dcterms.referencesJ.A. Duffie, W.A. Beckman Solar Engineering of Thermal Processes John Wiley & Sons (2013)spa
dcterms.referencesW. Wang, L. Chen, F. Sun, C. Wu Performance analysis for an irreversible variable temperature heat reservoir closed intercooled regenerated brayton cycle Energy Convers. Manage., 44 (17) (2003), pp. 2713-2732spa
dcterms.referencesY. Çengel, M. Boles Thermodynamic: An Engineering Approach (eighth ed.), McGraw-Hill (2015)spa
dcterms.referencesD. Kulshreshtha, S. Mehta, Exergy analysis of a regenerative micro gas turbine engine, in: ICFD 10: Tenth International Congress of Fluid Dynamics, 2010.spa
dcterms.referencesJ. Parrott Theoretical upper limit to the conversion efficiency of solar energy Solar Energy, 21 (3) (1978), pp. 227-229spa
dcterms.referencesR. Petela Exergy of undiluted thermal radiation Solar Energy, 74 (6) (2003), pp. 469-488spa
dcterms.referencesMeteosevilla, 2017. URL www.meteosevilla.com.spa
dcterms.referencesE. Ramírez-Cerpa, M. Acosta-Coll, J. Vélez-Zapata, Análisis de condiciones climatológicas de precipitaciones de corto plazo en zonas urbanas: caso de estudio Barranquilla, Colombia, Idesia (Arica) 35 (ahead) (2017) 0–0. doi:10.4067/S0718-34292017005000023.spa
dcterms.referencesR. Korzynietz, J. Brioso, A. del Río, M. Quero, M. Gallas, R. Uhlig, M. Ebert, R. Buck, D. Teraji, Solugas – comprehensive analysis of the solar hybrid brayton plant, Solar Energy 135 (2016) 578–589.spa
dcterms.referencesP.G. Package, Mercury 50 – Power Generation Packages, Solar Turbines, 2019. https://www.solarturbines.com/en_US/products/power-generation-packages/mercury-50.html.spa
dcterms.references. Wu, G. Lin, J. Chen Parametric optimization of a solar-driven braysson heat engine with variable heat capacity of the working fluid and radiation–convection heat losses Renew. Energy, 35 (1) (2010), pp. 95-100spa
dcterms.referencesA. Romier, Small gas turbine technology, Appl. Therm. Eng. 24 (11) (2004) 1709–1723, Industrial Gas Turbine Technologies.spa
dcterms.referencesG. Barigozzi, A. Perdichizzi, C. Gritti, I. Guaiatelli Techno-economic analysis of gas turbine inlet air cooling for combined cycle power plant for different climatic conditions Appl. Therm. Eng., 82 (2015), pp. 57-67spa
dcterms.referencesP.E.B. de Mello, D.B. Monteiro, Thermodynamic study of an efgt (externally fired gas turbine) cycle with one detailed model for the ceramic heat exchanger, Energy 45 (1) (2012) 497–502, The 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy, ECOS 2011.spa
dcterms.referencesT. Kotas The Exergy Method of Thermal Plant Analysis Butterworth-Heinemann (1985)spa
dc.contributor.corporatenameThermal Science and Engineering Progressspa
dc.coverage.countryColombia
dc.identifier.doihttps://doi.org/10.1016/j.tsep.2020.100679
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol.20 (2021)spa
dc.relation.citationendpage100704spa
dc.relation.citationstartpage100679spa
dc.relation.citationvolume20spa
dc.relation.citesMoreno-Gamboa, F., Escudero-Atehortua, A., & Nieto-Londoño, C. (2020). Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods. Thermal Science and Engineering Progress, 20, 100679.
dc.relation.ispartofjournalThermal Science and Engineering Progressspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalThermosolar gas-turbineeng
dc.subject.proposalHybrid plantseng
dc.subject.proposalThermodynamic modeleng
dc.subject.proposalVariable solar irradianceeng
dc.subject.proposalGlobal plant performanceeng
dc.subject.proposalDirect normal irradianceeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).T
Except where otherwise noted, this item's license is described as © 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).T