Show simple item record

dc.contributor.authorMoreno Gamboa, Faustino
dc.contributor.authorNieto-Londoño, César
dc.date.accessioned2021-10-14T00:24:25Z
dc.date.available2021-10-14T00:24:25Z
dc.date.issued2021-04-09
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/304
dc.description.abstractHybrid Brayton concentrated solar power (CSP) plants have been gaining attention in the last decade upon many advantages regarding the use of traditional generation technologies combined with renewable energy sources. However, some technical and economic issues must be solved to allow its widespread use. Research and development efforts are deemed essential to the study of factors that constrain cycle performance looking to increase its efficiency, reducing fuel consumption, and decreasing emissions. This study presents the performance evaluation of a hybrid multi-stage CSP plant considering specific environmental conditions to attain the factor that constrains its optimal performance. Overall energy and exergy plant efficiencies are analyzed, considering an arbitrary number of stages. For instance, a double compression expansion hybrid CSP plant shows the overall energy efficiency of 32% larger, a 30% higher exergy efficiency, and a fuel conversion rate around 18% larger when compared with a single-stage CSP plant.eng
dc.format.extent08 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.relation.ispartofJournal of Energy Resources Technology. Vol.143 No.6.(2021)
dc.rights© 2021 by ASMEeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://asmedigitalcollection.asme.org/energyresources/article-abstract/143/6/062108/1103608/Hybrid-Brayton-Multi-Stage-Concentrated-Solar?redirectedFrom=fulltextspa
dc.titleHybrid brayton multi-stage concentrated solar power plant energy and exergy performance studyeng
dc.typeArtículo de revistaspa
dcterms.referencesIEA, 2019, “World Energy Outlook 2019,” International Energy Agency, Paris, France, Technical Report No. WEO-2019.spa
dcterms.referencesDing, L., Akbarzadeh, A., Singh, B., and Remeli, M., 2017, “Feasibility of Electrical Power Generation Using Thermoelectric Modules Via Solar Pond Heat Extraction,” Energy. Convers. Manage., 135, pp. 74–83.spa
dcterms.referencesElsayed, I., and Nishi, Y., 2018, “A Feasibility Study on Power Generation From Solar Thermal Wind Tower: Inclusive Impact Assessment Concerning Environmental and Economic Costs,” Energies, 11(11), p. 3181.spa
dcterms.referencesKirmani, S., Jamil, M., and Akhtar, I., 2018, “Economic Feasibility of Hybrid Energy Generation With Reduced Carbon Emission,” IET Ren. Power Gen., 12(8), pp. 934–942.spa
dcterms.referencesTaylor, N., 2019, “Solar Thermal Electricity: Technology Development Report,” Technical Report, EUR 29913 EN, Publications Office of the European Union, Luxembourg.spa
dcterms.referencesBouhal, T., Agrouaz, Y., Kousksou, T., Allouhi, A., and Bakkas, M., 2018, “Technical Feasibility of a Sustainable Concentrated Solar Power in Morocco Through an Energy Analysis,” Renewable. Sustainable. Energy. Rev., 81, pp. 1087–1095.spa
dcterms.referencesRafique, M. M., and Bahaidarah, H. M. S., 2019, “Thermo-Economic and Environmental Feasibility of a Solar Power Plant as a Renewable and Green Source of Electrification,” Int. J. Green Energy, 16(15), pp. 1577–1590.spa
dcterms.referencesJacobson, M. Z., and Delucchi, M. A., 2011, “Providing All Global Energy With Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials,” Energy Policy, 39(3), pp. 1154–1169.spa
dcterms.referencesSantos, M., Miguel-Barbero, C., Merchán, R., Medina, A., and Hernández, A. C., 2018, “Roads to Improve the Performance of Hybrid Thermosolar Gas Turbine Power Plants: Working Fluids and Multi-Stage Configurations,” Energy Convers Manage, 165, pp. 578–592.spa
dcterms.referencesSuresh, N., Thirumalai, N., and Dasappa, S., 2019, “Modeling and Analysis of Solar Thermal and Biomass Hybrid Power Plants,” Appl. Therm. Eng., 160, p. 114121.spa
dcterms.referencesCosta, S.-C., Mahkamov, K., Kenisarin, M., Ismail, M., Lynn, K., Halimic, E., and Mullen, D., 2019, “Solar Salt Latent Heat Thermal Storage for a Small Solar Organic Rankine Cycle Plant,” ASME J. Energy. Res. Technol., 142(3), p. 031203.spa
dcterms.referencesKorzynietz, R., Brioso, J., Gallas, M., Uhlig, R., Ebert, M., Buck, R., and Teraji, D., 2016, “Solugas—Comprehensive Analysis of the Solar Hybrid Brayton Plant,” Sol. Energy, 135, pp. 578–589.spa
dcterms.referencesElmohlawy, A. E., Ochkov, V. F., and Kazandzhan, B. I., 2019, “Thermal Performance Analysis of a Concentrated Solar Power System (CSP) Integrated With Natural Gas Combined Cycle (NGCC) Power Plant,” Case Studies Thermal Eng., 14, p. 100458.spa
dcterms.referencesJouhara, H., Ż abnień ska Gra, A., Khordehgah, N., Ahmad, D., and Lipinski, T., 2020, “Latent Thermal Energy Storage Technologies and Applications: A Review,” Int. J. Thermofluids, 4–5, p. 100039.spa
dcterms.referencesBernardos, E., López, I., Rodríguez, J., and Abánades, A., 2013, “Assessing the Potential of Hybrid Fossil–Solar Thermal Plants for Energy Policy Making: Brayton Cycles,” Energy Policy, 62, pp. 99–106.spa
dcterms.referencesFang, L., Li, Y., Yang, X., and Yang, Z., 2019, “Analyses of Thermal Performance of Solar Power Tower Station Based on a Supercritical CO2 Brayton Cycle,” ASME J. Energy. Res. Technol., 142(3), p. 031301.spa
dcterms.referencesFerraro, V., Imineo, F., and Marinelli, V., 2013, “An Improved Model to Evaluate Thermodynamic Solar Plants With Cylindrical Parabolic Collectors and Air Turbine Engines in Open Joule–brayton Cycle,” Energy, 53, pp. 323–331.spa
dcterms.referencesMoreno-Gamboa, F., Escudero-Atehortua, A., and Nieto-Londoño, C., 2020, “Performance Evaluation of External Fired Hybrid Solar Gas-Turbine Power Plant in Colombia Using Energy and Exergy Methods,” Ther. Sci. Eng. Prog., 20, p. 100679.spa
dcterms.referencesOlivenza-León, D., Medina, A., and Calvo Hernández, A., 2015, “Thermodynamic Modeling of a Hybrid Solar Gas-Turbine Power Plant,” Energy Convers. Manage., 93, pp. 435–447.spa
dcterms.referencesBehar, O., 2018, “Solar Thermal Power Plants—A Review of Configurations and Performance Comparison,” Renewable. Sustainable. Energy. Rev., 92, pp. 608–627.spa
dcterms.referencesMerchán, R., Santos, M., Heras, I., Gonzalez-Ayala, J., Medina, A., and Hernández, A. C., 2020, “On-Design Pre-optimization and Off-Design Analysis of Hybrid Brayton Thermosolar Tower Power Plants for Different Fluids and Plant Configurations,” Renewable Sustainable Energy Rev., 119, p. 109590.spa
dcterms.referencesGueymard, C., 2000, “Prediction and Performance Assessment of Mean Hourly Global Radiation,” Sol. Energy, 68(3), pp. 285–303.spa
dcterms.referencesLiu, B. Y., and Jordan, R. C., 1960, “The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation,” Sol. Energy, 4(3), pp. 1–19.spa
dcterms.referencesNational Aeronautics and Space Administration, 2018, “Power Data Access Viewer,” https://power.larc.nasa.gov/data-access-viewer/, Accessed April 1, 2019.spa
dcterms.referencesMeteoSevilla, 2017, “Estación Meteorológica de Santiponce,” Sevilla, Spain, http://www.meteosevilla.com/inicio.htm, Accessed June 25, 2017.spa
dcterms.referencesRamírez-Cerpa, E., Acosta-Coll, M., and Vélez-Zapata, J., 2017, “Análisis De Condiciones Climatológicas De Precipitaciones De Corto Plazo En Zonas Urbanas: Caso De Estudio Barranquilla, Colombia,” Idesia (Arica), 35, pp. 87–94.spa
dcterms.referencesSánchez-Orgaz, S., 2012, “Modelización, Análisis Y Optimización Termodinámica De Plantas De Potencia Multietapa Tipo Brayton. Aplicación a Centrales Termosolares,” Ph.D. thesis, Universidad de Salamanca, Spain.spa
dcterms.referencesSantos, M., Merchán, R., Medina, A., and Calvo Hernández, A., 2016, “Seasonal Thermodynamic Prediction of the Performance of a Hybrid Solar Gas-Turbine Power Plant,” Energy Convers. Manage., 115, pp. 89–102.spa
dcterms.referencesAljundi, I. H., 2009, “Energy and Exergy Analysis of a Steam Power Plant in Jordan,” Appl. Therm. Eng., 29(2), pp. 324–328.spa
dcterms.referencesYue, T., and Lior, N., 2018, “Thermal Hybrid Power Systems Using Multiple Heat Sources of Different Temperature: Thermodynamic Analysis for Brayton Cycles,” Energy, 165, pp. 639–665.spa
dcterms.referencesPetela, R., 2003, “Exergy of Undiluted Thermal Radiation,” Sol. Energy, 74(6), pp. 469–488.spa
dcterms.referencesAtif, M., and Al-Sulaiman, F. A., 2017, “Energy and Exergy Analyses of Solar Tower Power Plant Driven Supercritical Carbon Dioxide Recompression Cycles for Six Different Locations.”spa
dcterms.referencesRomier, A., 2004, “Small Gas Turbine Technology,” Appl. Therm. Eng., 24(11), pp. 1709–1723, Industrial Gas Turbine Technologies.spa
dcterms.referencesSantos, M., Merchán, R., Medina, A., and Hernández, A. C., 2016, “Seasonal Thermodynamic Prediction of the Performance of a Hybrid Solar Gas-Turbine Power Plant,” Energy Convers. Manage., 115, pp. 89–102.spa
dc.contributor.corporatenameJournal of Energy Resources Technologyspa
dc.identifier.doihttps://doi.org/10.1115/1.4050486
dc.relation.citationeditionVol.143 No.6.(2021)spa
dc.relation.citationendpage8spa
dc.relation.citationissue6(2021)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume143spa
dc.relation.citesMoreno-Gamboa, F., and Nieto-Londoño, C. (April 9, 2021). "Hybrid Brayton Multi-Stage Concentrated Solar Power Plant Energy and Exergy Performance Study." ASME. J. Energy Resour. Technol. June 2021; 143(6): 062108. https://doi.org/10.1115/1.4050486
dc.relation.ispartofjournalJournal of Energy Resources Technology,spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalalternative energy sourceseng
dc.subject.proposalenergy systems analysiseng
dc.subject.proposalrenewable energyeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2021 by ASME
Except where otherwise noted, this item's license is described as © 2021 by ASME