dc.contributor.author | Moreno Gamboa, Faustino | |
dc.contributor.author | Nieto-Londoño, César | |
dc.date.accessioned | 2021-10-14T00:24:25Z | |
dc.date.available | 2021-10-14T00:24:25Z | |
dc.date.issued | 2021-04-09 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/304 | |
dc.description.abstract | Hybrid Brayton concentrated solar power (CSP) plants have been gaining attention in the last decade upon many advantages regarding the use of traditional generation technologies combined with renewable energy sources. However, some technical and economic issues must be solved to allow its widespread use. Research and development efforts are deemed essential to the study of factors that constrain cycle performance looking to increase its efficiency, reducing fuel consumption, and decreasing emissions. This study presents the performance evaluation of a hybrid multi-stage CSP plant considering specific environmental conditions to attain the factor that constrains its optimal performance. Overall energy and exergy plant efficiencies are analyzed, considering an arbitrary number of stages. For instance, a double compression expansion hybrid CSP plant shows the overall energy efficiency of 32% larger, a 30% higher exergy efficiency, and a fuel conversion rate around 18% larger when compared with a single-stage CSP plant. | eng |
dc.format.extent | 08 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.relation.ispartof | Journal of Energy Resources Technology. Vol.143 No.6.(2021) | |
dc.rights | © 2021 by ASME | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://asmedigitalcollection.asme.org/energyresources/article-abstract/143/6/062108/1103608/Hybrid-Brayton-Multi-Stage-Concentrated-Solar?redirectedFrom=fulltext | spa |
dc.title | Hybrid brayton multi-stage concentrated solar power plant energy and exergy performance study | eng |
dc.type | Artículo de revista | spa |
dcterms.references | IEA, 2019, “World Energy Outlook 2019,” International Energy Agency, Paris, France, Technical Report No. WEO-2019. | spa |
dcterms.references | Ding, L., Akbarzadeh, A., Singh, B., and Remeli, M., 2017, “Feasibility of Electrical Power Generation Using Thermoelectric Modules Via Solar Pond Heat Extraction,” Energy. Convers. Manage., 135, pp. 74–83. | spa |
dcterms.references | Elsayed, I., and Nishi, Y., 2018, “A Feasibility Study on Power Generation From Solar Thermal Wind Tower: Inclusive Impact Assessment Concerning Environmental and Economic Costs,” Energies, 11(11), p. 3181. | spa |
dcterms.references | Kirmani, S., Jamil, M., and Akhtar, I., 2018, “Economic Feasibility of Hybrid Energy Generation With Reduced Carbon Emission,” IET Ren. Power Gen., 12(8), pp. 934–942. | spa |
dcterms.references | Taylor, N., 2019, “Solar Thermal Electricity: Technology Development Report,” Technical Report, EUR 29913 EN, Publications Office of the European Union, Luxembourg. | spa |
dcterms.references | Bouhal, T., Agrouaz, Y., Kousksou, T., Allouhi, A., and Bakkas, M., 2018, “Technical Feasibility of a Sustainable Concentrated Solar Power in Morocco Through an Energy Analysis,” Renewable. Sustainable. Energy. Rev., 81, pp. 1087–1095. | spa |
dcterms.references | Rafique, M. M., and Bahaidarah, H. M. S., 2019, “Thermo-Economic and Environmental Feasibility of a Solar Power Plant as a Renewable and Green Source of Electrification,” Int. J. Green Energy, 16(15), pp. 1577–1590. | spa |
dcterms.references | Jacobson, M. Z., and Delucchi, M. A., 2011, “Providing All Global Energy With Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials,” Energy Policy, 39(3), pp. 1154–1169. | spa |
dcterms.references | Santos, M., Miguel-Barbero, C., Merchán, R., Medina, A., and Hernández, A. C., 2018, “Roads to Improve the Performance of Hybrid Thermosolar Gas Turbine Power Plants: Working Fluids and Multi-Stage Configurations,” Energy Convers Manage, 165, pp. 578–592. | spa |
dcterms.references | Suresh, N., Thirumalai, N., and Dasappa, S., 2019, “Modeling and Analysis of Solar Thermal and Biomass Hybrid Power Plants,” Appl. Therm. Eng., 160, p. 114121. | spa |
dcterms.references | Costa, S.-C., Mahkamov, K., Kenisarin, M., Ismail, M., Lynn, K., Halimic, E., and Mullen, D., 2019, “Solar Salt Latent Heat Thermal Storage for a Small Solar Organic Rankine Cycle Plant,” ASME J. Energy. Res. Technol., 142(3), p. 031203. | spa |
dcterms.references | Korzynietz, R., Brioso, J., Gallas, M., Uhlig, R., Ebert, M., Buck, R., and Teraji, D., 2016, “Solugas—Comprehensive Analysis of the Solar Hybrid Brayton Plant,” Sol. Energy, 135, pp. 578–589. | spa |
dcterms.references | Elmohlawy, A. E., Ochkov, V. F., and Kazandzhan, B. I., 2019, “Thermal Performance Analysis of a Concentrated Solar Power System (CSP) Integrated With Natural Gas Combined Cycle (NGCC) Power Plant,” Case Studies Thermal Eng., 14, p. 100458. | spa |
dcterms.references | Jouhara, H., Ż abnień ska Gra, A., Khordehgah, N., Ahmad, D., and Lipinski, T., 2020, “Latent Thermal Energy Storage Technologies and Applications: A Review,” Int. J. Thermofluids, 4–5, p. 100039. | spa |
dcterms.references | Bernardos, E., López, I., Rodríguez, J., and Abánades, A., 2013, “Assessing the Potential of Hybrid Fossil–Solar Thermal Plants for Energy Policy Making: Brayton Cycles,” Energy Policy, 62, pp. 99–106. | spa |
dcterms.references | Fang, L., Li, Y., Yang, X., and Yang, Z., 2019, “Analyses of Thermal Performance of Solar Power Tower Station Based on a Supercritical CO2 Brayton Cycle,” ASME J. Energy. Res. Technol., 142(3), p. 031301. | spa |
dcterms.references | Ferraro, V., Imineo, F., and Marinelli, V., 2013, “An Improved Model to Evaluate Thermodynamic Solar Plants With Cylindrical Parabolic Collectors and Air Turbine Engines in Open Joule–brayton Cycle,” Energy, 53, pp. 323–331. | spa |
dcterms.references | Moreno-Gamboa, F., Escudero-Atehortua, A., and Nieto-Londoño, C., 2020, “Performance Evaluation of External Fired Hybrid Solar Gas-Turbine Power Plant in Colombia Using Energy and Exergy Methods,” Ther. Sci. Eng. Prog., 20, p. 100679. | spa |
dcterms.references | Olivenza-León, D., Medina, A., and Calvo Hernández, A., 2015, “Thermodynamic Modeling of a Hybrid Solar Gas-Turbine Power Plant,” Energy Convers. Manage., 93, pp. 435–447. | spa |
dcterms.references | Behar, O., 2018, “Solar Thermal Power Plants—A Review of Configurations and Performance Comparison,” Renewable. Sustainable. Energy. Rev., 92, pp. 608–627. | spa |
dcterms.references | Merchán, R., Santos, M., Heras, I., Gonzalez-Ayala, J., Medina, A., and Hernández, A. C., 2020, “On-Design Pre-optimization and Off-Design Analysis of Hybrid Brayton Thermosolar Tower Power Plants for Different Fluids and Plant Configurations,” Renewable Sustainable Energy Rev., 119, p. 109590. | spa |
dcterms.references | Gueymard, C., 2000, “Prediction and Performance Assessment of Mean Hourly Global Radiation,” Sol. Energy, 68(3), pp. 285–303. | spa |
dcterms.references | Liu, B. Y., and Jordan, R. C., 1960, “The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation,” Sol. Energy, 4(3), pp. 1–19. | spa |
dcterms.references | National Aeronautics and Space Administration, 2018, “Power Data Access Viewer,” https://power.larc.nasa.gov/data-access-viewer/, Accessed April 1, 2019. | spa |
dcterms.references | MeteoSevilla, 2017, “Estación Meteorológica de Santiponce,” Sevilla, Spain, http://www.meteosevilla.com/inicio.htm, Accessed June 25, 2017. | spa |
dcterms.references | Ramírez-Cerpa, E., Acosta-Coll, M., and Vélez-Zapata, J., 2017, “Análisis De Condiciones Climatológicas De Precipitaciones De Corto Plazo En Zonas Urbanas: Caso De Estudio Barranquilla, Colombia,” Idesia (Arica), 35, pp. 87–94. | spa |
dcterms.references | Sánchez-Orgaz, S., 2012, “Modelización, Análisis Y Optimización Termodinámica De Plantas De Potencia Multietapa Tipo Brayton. Aplicación a Centrales Termosolares,” Ph.D. thesis, Universidad de Salamanca, Spain. | spa |
dcterms.references | Santos, M., Merchán, R., Medina, A., and Calvo Hernández, A., 2016, “Seasonal Thermodynamic Prediction of the Performance of a Hybrid Solar Gas-Turbine Power Plant,” Energy Convers. Manage., 115, pp. 89–102. | spa |
dcterms.references | Aljundi, I. H., 2009, “Energy and Exergy Analysis of a Steam Power Plant in Jordan,” Appl. Therm. Eng., 29(2), pp. 324–328. | spa |
dcterms.references | Yue, T., and Lior, N., 2018, “Thermal Hybrid Power Systems Using Multiple Heat Sources of Different Temperature: Thermodynamic Analysis for Brayton Cycles,” Energy, 165, pp. 639–665. | spa |
dcterms.references | Petela, R., 2003, “Exergy of Undiluted Thermal Radiation,” Sol. Energy, 74(6), pp. 469–488. | spa |
dcterms.references | Atif, M., and Al-Sulaiman, F. A., 2017, “Energy and Exergy Analyses of Solar Tower Power Plant Driven Supercritical Carbon Dioxide Recompression Cycles for Six Different Locations.” | spa |
dcterms.references | Romier, A., 2004, “Small Gas Turbine Technology,” Appl. Therm. Eng., 24(11), pp. 1709–1723, Industrial Gas Turbine Technologies. | spa |
dcterms.references | Santos, M., Merchán, R., Medina, A., and Hernández, A. C., 2016, “Seasonal Thermodynamic Prediction of the Performance of a Hybrid Solar Gas-Turbine Power Plant,” Energy Convers. Manage., 115, pp. 89–102. | spa |
dc.contributor.corporatename | Journal of Energy Resources Technology | spa |
dc.identifier.doi | https://doi.org/10.1115/1.4050486 | |
dc.relation.citationedition | Vol.143 No.6.(2021) | spa |
dc.relation.citationendpage | 8 | spa |
dc.relation.citationissue | 6(2021) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 143 | spa |
dc.relation.cites | Moreno-Gamboa, F., and Nieto-Londoño, C. (April 9, 2021). "Hybrid Brayton Multi-Stage Concentrated Solar Power Plant Energy and Exergy Performance Study." ASME. J. Energy Resour. Technol. June 2021; 143(6): 062108. https://doi.org/10.1115/1.4050486 | |
dc.relation.ispartofjournal | Journal of Energy Resources Technology, | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.subject.proposal | alternative energy sources | eng |
dc.subject.proposal | energy systems analysis | eng |
dc.subject.proposal | renewable energy | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |