dc.contributor.author | Parra LLanos, John Wilmer | |
dc.contributor.author | Santos, Rossane | |
dc.contributor.author | Bastos Quadri, Marintho | |
dc.contributor.author | Martins, Ianto Oliveira | |
dc.date.accessioned | 2021-12-10T12:48:51Z | |
dc.date.available | 2021-12-10T12:48:51Z | |
dc.date.issued | 2020-04-28 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1797 | |
dc.description.abstract | Mathematical modeling and simulation of cotton fabric drying in a stenter machine was performed using a finite element method. A standard κ-ɛ turbulence model was coupled with heat/mass transfer in porous media models. A novel approach to simulate all injectors enabled a new perspective of the process and the calculation of local convective coefficients. Three simulations were run: Simulation I reproduced real operational conditions; Simulations II and III estimated the effects of increasing drying air inlet velocity and decreasing translational velocity of the fabric, respectively. The highest drying air velocities occurred at the nozzles on the edges of the injectors, leading to high convective heat and mass transfer coefficients. Results indicated the drying process was not uniform along the fabric’s width. The models were acceptable in realistically predicting the drying of a cotton fabric in a stenter machine and could be useful in optimizing the stenter design considering the final product’s quality and energy consumption. | eng |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Textile Research Journal | spa |
dc.relation.ispartof | Textile Research Journal | |
dc.rights | SAGE Publications has partnered with Copyright Clearance Center's RightsLink service to offer a variety of options for reusing this content. | eng |
dc.source | https://journals.sagepub.com/doi/abs/10.1177/0040517520918231 | spa |
dc.title | Phenomenological modeling and simulation of a textile stenter | eng |
dc.type | Artículo de revista | spa |
dcterms.references | World Trade Organization . World Trade Statistical Review, Geneva: WTO, 2018. . Epub ahead of print 30 July 2018. DOI: 10.30875/0ab3aa40-en. | spa |
dcterms.references | Hasanbeigi, A, Price, L. A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry. J Clean Prod 2015; 95: 30–44. | spa |
dcterms.references | Rakib, MI, Saidur, R, Mohamad, EN, et al. Waste-heat utilization: The sustainable technologies to minimize energy consumption in Bangladesh textile sector. J Clean Prod 2017; 142: 1867–1876. | spa |
dcterms.references | Hasanbeigi, A, Price, L. A review of energy use and energy efficiency technologies for the textile industry. Renew Sustain Energy Rev 2012; 16: 3648–3665. | spa |
dcterms.references | Santos, RM, Llanos, JWP, Quadri, MB, et al. Study of drying and consumption of natural gas in a textile stenter of direct heating. Dry Technol 2015; 33: 37–54. | spa |
dcterms.references | Juraeva, M, Ryu, KJ, Song, DJ. Optimum design of the injection duct system of a stenter machine. J Mech Sci Technol 2017; 31: 2279–2285. | spa |
dcterms.references | Qian, M, Wang, J, Xiang, Z, et al. Heat and moisture transfer performance of thin cotton fabric under impingement drying. Text Res J. Epub ahead of print 2018. DOI: 10.1177/0040517518807446. | spa |
dcterms.references | Fiaschi, D, Manfrida, G, Russo, L, et al. Improvement of waste heat recuperation on an industrial textile dryer: Redesign of heat exchangers network and components. Energy Convers Manag 2017; 150: 924–940. | spa |
dcterms.references | Islam, S, Alam, SMM, Akter, S. Identifying a suitable heat setting temperature to optimize the elastic performances of cotton spandex woven fabric. Res J Text Appar 2018; 22: 260–270. | spa |
dcterms.references | Caliskan, S, Baskaya, S, Calisir, T. Experimental and numerical investigation of geometry effects on multiple impinging air jets. Int J Heat Mass Transf 2014; 75: 685–703. | spa |
dcterms.references | Penumadu, PS, Rao, AG. Numerical investigations of heat transfer and pressure drop characteristics in multiple jet impingement system. Appl Therm Eng 2017; 110: 1511–1524. | spa |
dcterms.references | Launder, BE, Jones, WP. The prediction of laminarisation with a two-equations model of turbulence. Int J Heat Mass Transf 1972; 15: 301–314. | spa |
dcterms.references | Versteeg HK and Malaskekera W. An introduction to computational fluid dynamics: The finite volume method. 1st ed. Longman Scientific and Technical, 1995. Epub ahead of print 1995. DOI: 10.2514/1.22547. | spa |
dcterms.references | Bergman, TL, Lavine, AS, Incropera, FP, et al. Fundamentals of heat and mass transfer, 7th ed. Hoboken, NJ: John Wiley and Sons, 2011. | spa |
dcterms.references | Eleotério JR. Modelagem e simulação do processo de secagem de madeiras serradas de espécies tropicais brasileiras. Federal Univerity of Santa Catarina, 2009 Available at: https://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/92895/274070.pdf?sequence=1&isAllowed=y (accessed may 2015). | spa |
dcterms.references | Gibson, PW, Charmchi, M. Modeling convection/diffusion processes in porous textiles with inclusion of humidity-dependent air permeability. Int Commun Heat Mass Transf 1997; 24: 709–724. | spa |
dcterms.references | Geankoplis CJ. Transport processes and unit operations. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1993. ISBN-10: 0139304398. | spa |
dcterms.references | Rozas Mellado, ECE . Modelo de transferencia de calor e massa na secagem de madeira serrada de pinus, Curitiba: Federal Univeristy of Paraná, 2007. | spa |
dcterms.references | Xue, L . Process Optimization of Dryers / Tenters in the Textile Industry, Atlanta: Georgia Institute of Technology, 2004. | spa |
dcterms.references | Foust, AS, Wenzel, LA, Clump, CW, et al. Principles of unit operations 19802nd ed. New York: John Wiley and Sons. | spa |
dcterms.references | Tetens, O . Über einige meteorologische Begriffe. Zeitschrift Geophys 1930; 6: 207–309. | spa |
dcterms.references | Galarça, MM . Análise numérica para modelos de turbulência K-ω e SST/K-ω para o escoamento de ar no interior de uma lareira de pequeno porte, Porto Alegre: Federal University of Rio Grande do Sul, 2004. | spa |
dcterms.references | Hansen, LG, Webb, BW. Air jet impingement heat transfer from modified surfaces. Int J Heat Mass Transf 1993; 36: 989–997. | spa |
dcterms.references | Colucci, DW, Viskanta, R, Lafayette, W. Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Exp Therm Fluid Sci 1996; 1777: 71–80. | spa |
dcterms.references | Gao L. Effect of jet hole arrays arrangement on impingement heat transfer. Baton Rouge, LA: Louisiana State University, 2003. | spa |
dcterms.references | Welty, JR, Wicks, CE, Wilson, RE, et al. Fundamentals of momentum, heat and mass transfer 20075th ed. Hoboken, NJ: John Wiley and Sons. | spa |
dcterms.references | Chilton, TH, Colburn, AP. Mass transfer (absorption) coefficients: Prediction from data on heat transfer and fluid friction. Ind Eng Chem 1934; 26: 1183–1187. | spa |
dcterms.references | Francis, ND, Wepfer, WJ. Jet impingement drying of a moist porous solid. Int J Heat Mass Transf 1996; 39: 1911–1923. | spa |
dcterms.references | Lee, HS, Carr, WW, Beckham, HW, et al. A model of through-air drying of tufted textile materials. Int J Heat Mass Transf 2001; 45: 357–366. | spa |
dcterms.references | Albuquerque, WMS . Estudo da secagem de tecido jeans, Recife: Federal University of Pernambuco, 2011. | spa |
dcterms.references | Kim, D, Son, G, Kim, S. Numerical analysis of convective drying of a moving moist object. Int J Heat Mass Transf 2016; 99: 86–94. | spa |
dc.identifier.doi | https://doi.org/10.1177/0040517520918231 | |
dc.publisher.place | Washintong D.C , Estados Unidos | spa |
dc.relation.citationendpage | 18 | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.cites | Wilmer Parra Llanos, J., Mailde Santos, R., Bastos Quadri, M., & Oliveira Martins, I. (2020). Phenomenological modeling and simulation of a textile stenter. Textile Research Journal, 0040517520918231. | |
dc.relation.ispartofjournal | Textile Research Journal | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.subject.proposal | stenter | eng |
dc.subject.proposal | textile | eng |
dc.subject.proposal | convective drying | eng |
dc.subject.proposal | mathematical modeling | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |