Mostrar el registro sencillo del ítem

dc.contributor.authorFlorez Márquez, Jessica Ducley
dc.contributor.authorLeal Medina, Gloria Ines
dc.contributor.authorArdila Leal, Leidy Diana
dc.contributor.authorCardenas Caro, Diana Maria
dc.date.accessioned2021-12-09T22:31:37Z
dc.date.available2021-12-09T22:31:37Z
dc.date.issued2017-06
dc.identifier.issn1405-3195
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1788
dc.description.abstractLas rizobacterias promotoras de crecimiento vegetal son reconocidas y estudiadas por sus efectos benéficos en varios cultivos. Cepas de los géneros Azotobacter y Pseudomonas se aislaron de suelo rizosférico de cultivos de arroz (Oryza sativa L.) de 10 fincas en el distrito de riego del río Zulia, Norte de Santander, Colombia. El aislamiento bacteriano se hizo a partir de gránulos de suelo y diluciones seriadas de suelo, sembradas en agar Ashby para Azotobacter y King B para Pseudomonas fluorescentes, respectivamente. Cuarenta y dos aislamientos se conservaron en viales con solución salina estéril (0.85 % NaCl) en refrigeración a 4 °C y se ingresaron al Banco de Cepas del Laboratorio de Investigaciones en Biología Aplicada de la Universidad Francisco de Paula Santander, Cúcuta, Colombia. Para seleccionar aislamientos con potencial para el desarrollo de inoculantes microbianos, en todas las cepas se determinó su capacidad de solubilización de fosfato inorgánico, fijación biológica de nitrógeno, síntesis de ácido indoloacético y sideróforos. Con un conglomerado jerárquico de las medianas de las cuatro actividades se seleccionaron cuatro aislamientos por presentar los valores más cercanos a los testigos diseñados como cepas promisorias en las cuatro actividades según el dendrograma de similitudes. Estas cuatro cepas se identificaron como Pseudomonas putida (RzA027 y RzA035), Azotobacter chrococcum (RzA040) y Azotobacter tropicalis (RzA042) mediante amplificación del gen 16S ADNr.spa
dc.description.abstractThe plant-growth promoting rhizobacteria are recognized and studied for their beneficial effects on several crops. Strains of the Azotobacter and Pseudomonas genera were isolated from rhizospheric soil where rice crops (Oryza sativa L.) are grown, from 10 farms located in the Zulia River’s irrigation district, Norte de Santander, Colombia. The bacterial isolation was obtained from granular soil and serial soil dilutions, which were planted on Ashby and King B agar, for Azotobacter and fluorescent Pseudomonas, respectively. Forty-two isolates were stored in vials with a sterile saline solution (0.85 % NaCl) in a refrigerator at 4 °C and were deposited in the Bank of Strains of the Applied Biology Research Laboratory of the Universidad Francisco de Paula Santander, Cúcuta, Colombia. The capacity to solubilize inorganic phosphate, to fix biological nitrogen, and to synthesize indoleacetic acid and siderophores were determined in all strains, in order to select isolates with potential to develop microbial inoculum. With a hierarchical clustering of the medians of the four activities, four isolations were selected because they presented the closest values to the controls designed as promising strains in the four activities, according to the similarity dendrogram. These four strains were identified as Pseudomonas putida (RzA027 and RzA035), Azotobacter chrococcum (RzA040), and Azotobacter tropicalis (RzA042), by amplification of the 16S rDNA gene.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isospaspa
dc.publisherAgrocienciaspa
dc.relation.ispartofAgrociencia
dc.rightsEste es un artículo publicado en acceso abierto bajo una licencia Creative Commonsspa
dc.sourcehttp://www.scielo.org.mx/scielo.php?pid=S1405-31952017000400373&script=sci_arttext&tlng=enspa
dc.titleIsolation and characterization of rhizobacteria associated with rice crops (Oryza sativa L.) in Norte de Santander (Colombia)eng
dc.typeArtículo de revistaspa
dcterms.referencesAbd El-Fattah, D., W. Eweda, M. Zayed, and M. Hassanein . 2013. Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculant. Ann. Agric. Sci. 58: 111-118.spa
dcterms.referencesAbdel-Aziez, S., W. Eweda, M. G. Z. Girgis, and B. Abdel. 2014. Improving the productivity and quality of black cumin (Nigella sativa) by using Azotobacter as N2 biofertilizer. Ann. Agric. Sci . 59: 95-108spa
dcterms.referencesAguado-Santacruz G. A., Moreno-Gómez B., Jiménez-Francisco B., García-Moya E., y Preciado-Ortiz R. E. 2012. Impacto de los sideróforos microbianos y fitosideróforos en la asimilación de hierro por las plantas: una síntesis. Rev. Fitotec. Mex. 35: 9-21spa
dcterms.referencesAhemad, M., and M. S. Khan. 2012. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86: 945-950.spa
dcterms.referencesAndrade, L.F., G.L. Oliveira, D. de Souza, S. Nietsche, A. A. Xavier, M. R. Costa, A. M. Santos, M. C. Toledo, and D. F. Gomes. 2014. Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J. Microbiol. 52: 27-34.spa
dcterms.referencesAquilanti L., F. Favilli, and F. Clemeti. 2004. Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. Soil Biol. Biochem. 36: 1475-1483spa
dcterms.referencesArora, N. K., S. Tewari, and R. Singh. 2013. Multifaceted Plant-Associated Microbes and Their Mechanisms Diminish the Concept of Direct and Indirect PGPRs. Arora, N. K . (ed). Plant Microbe Symbiosis: Fundamentals and Advances. SPRINGER India. p.39.spa
dcterms.referencesAbdel-Aziez, S., S. W. Eweda, M. G. Z. Girgis, and B. Abdel. 2014. Improving the productivity and quality of black cumin (Nigella sativa) by using Azotobacter as N2 biofertilizer. Ann. Agric. Sci. 59: 95-108spa
dcterms.referencesBarua, S., S.Tripathi, A.Chakraborty, S.Ghosh, and K.Chakrabarti. 2012. Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils. Microbiol. Res. 167: 95-102spa
dcterms.referencesBellenger, J-P., F. Arnaud-Neu, Z. Asfari, S. C. B. Myneni, E. I. Stiefel, and A. M. L. Kraepiel . 2007. Complexation of oxoanions and cationic metals by the biscatecholate siderophore azotochelin. J. Biol. Inorg. Chem. 12: 367-376spa
dcterms.referencesCañón, R., V. Prato, M. A. Alterio, y D. Cárdenas. 2009. Efecto del uso del suelo sobre rizobacterias fosfatosolubilizadoras y diazotróficas en el distrito de riego del rio Zulia, Norte de Santander (Colombia). Revista Respuestas 14: 14-21spa
dcterms.referencesCárdenas, D., M. F. Garrido, R. R. Bonilla, y V. L. Baldani. 2010. Aislamiento e identificación de cepas de Azospirillum sp. en pasto guinea (Panicum maximum Jacq.) del Valle del Cesar. Pastos y Forrajes 33: 285-300.spa
dcterms.referencesCárdenas, D.M., L. T.Ramírez, y L. Y.Moreno. 2013. Caracterización de Actividades Promotoras del Crecimiento Vegetal por Rizobacterias y su Efecto en Cultivo de Cilantro (Coriandrum sativum L.). 1a. ed. Ecoe Ediciones. Colombia. 138 pspa
dcterms.referencesChennappa, G., C. R. Adkar-Purushothama, U.Suraj, K.Tamilvendan, and M.Y.Sreenivasa . 2014. Pesticide tolerant Azotobacter isolates from paddy growing areas of northern Karnataka, India. World J. Microbiol. Biotechnol. 30: 1-7.spa
dcterms.referencesCuevas, A. 2012. El clima y el cultivo de arroz en Norte de Santander. Revista Arroz 60: 4-8.spa
dcterms.referencesDe Souza, R., A. Beneduzi, and A. Ambrosini. 2012. The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366: 585-603spa
dcterms.referencesEscobar, C., Y. Horna, C. Carreño, y G. Mendoza. 2011. Caracterización de cepas nativas de Azotobacter spp. y su efecto en el desarrollo de Lycopersicon esculentum Mill. ‘tomate’ en Lambayeque. Scientia Agropec. 2: 39-49spa
dcterms.referencesGarcía de Salamone, I.E., J. M. Funes, L. Di Salvo, J.Escobar-Ortega , F.D’Auria , L.Ferrando L., and A. Fernandez-Escavino . 2012. Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: Impact of plant genotypes on rhizosphere microbial communities and field crop production. Appl. Soil Ecol. 61: 196-204spa
dcterms.referencesGauri, S., S.Mandal, and B.Pati. 2012. Impact of Azotobacter exopolysaccharides on sustainable agriculture. Appl. Microbiol. Biotechnol. 95: 331-338spa
dcterms.referencesHabibi, S., S. Djedidi, M. D. Firoz-Mortuza, N. Ohkama-Ohtsu, H. Sekimoto, and T. Yokoyoma. 2014. Physiological and genetic characterization of rice nitrogen fixer PGPR isolated from rhizosphere soils of different crops. Plant Soil 379: 51-66spa
dcterms.referencesHalpern, M., A.Bar-Tal, M.Ofek, D. Minz, T. Muller, and U. Yermiyahu. 2014. The use of biostimulants for enchanching nutrient uptake. Adv. Agron. 130: 1-34spa
dcterms.referencesHarrington, J. M., J. R. Bargar, A. A. Jarzecki, J. G. Roberts, L. A. Sombers, and O. W. Duckworth. 2012. Trace metal complexation by the triscatecholate siderophore protochelin: structure and stability. Biometals 25: 393-412spa
dcterms.referencesHernández, A., N. Rives, A. Caballero, A. Hernández, and M. Heydrich. 2004. Caracterización de rizobacterias asociadas al cultivo de maíz en la producción de metabolitos del tipo AIA, sideróforos y ácido salicílico. Rev. Colomb. Biotecnol. 6: 6-13spa
dcterms.referencesHussein, K. A., and J. H. Joo. 2015. Isolation and characterization of rhizomicrobial isolates for phosphate solubilization and indole acetic acid production. J. Kor. Soc. Appl. Biol. Chem. 23: 560-569spa
dcterms.referencesIGAC (Instituto Geográfico Agustín Codazzi). 2006. Estudio General de Suelos y Zonificación de Tierras del Departamento Norte de Santander. Imprenta Nacional de Colombia. 359 pspa
dcterms.referencesKaragöz, K., F.Ates, H.Karagöz, R. Kotan, and R. Çakmakç. 2012. Characterization of plant growth-promoting traits of bacteria isolated from the rhizosphere of grapevine grown in alkaline and acidic soils. Eur. J. Soil Biol. 50: 144-150spa
dcterms.referencesKing, E. O., M. K. Ward, and D. E Raney. 1954. Two simple media for the demonstration of pyocianin and fluorescin. J. Lab. Clin. Med. 44: 301-307spa
dcterms.referencesKuss A. V, V. V. Kuss, T. Lovato, e M. Lovato. 2007. Fixação de nitrogênio e produção de ácido indolacético in vitro por bactérias diazotróficas endofíticas. Pesq. Agropec. Bras. 42: 1459-1465spa
dcterms.referencesLavakush, J. Yadav, J.P.Verma, D.K.Jaiswal, and A.Kumar. 2014. Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol. Eng. 62: 123-128.spa
dcterms.referencesLópez-Ortega, M., P. Criollo-Campos, R. Gomez-Vargas, M. Camelo-Rusinque, G. Estrada-Bonilla, M. F. Garrido-Rubiano, and R. R. Bonilla-Buitrago. 2013. Caracterización de bacterias diazotróficas solublizadoras de fosfato como promotoras de crecimiento en plantas de maíz. Rev. Colomb. Biotecnol. 2: 115-123.spa
dcterms.referencesMalik, D. K., and S. Sindhu. 2011. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol, Mol. Biol. Plants 17: 25-32spa
dcterms.referencesMarschner, P., D. Crowley, and Z. Rengel. 2011. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis e model and research methods. Soil Biol. Biochem. 43: 883-894.spa
dcterms.referencesPark, J. H., N. Bolana, M. Megharaja, and R. Naidua. 2011. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J. Hazardous Mater. 185: 829-836spa
dcterms.referencesPatel, D., C. Kumar, N. Tank, and M. Saraaf. 2012. Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria. J. Plant Growth Regul. 31: 53-62spa
dcterms.referencesPhetcharat, P., and A. Duangpaeng. 2012. Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Procedia Eng. 32: 177-183spa
dcterms.referencesRadwan, T. El-S. El-D., Z. K. Mohamed, and V. M. Reis. 2005. Aeração e adição de sais na produção de ácido indol acético por bactérias diazotróficas. Pesq. Agropec. Bras . 40: 997-1004.spa
dcterms.referencesRohwer, F., V. Seguritan, F. Azam, and N. Knowlton. 2002. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243: 1-10spa
dcterms.referencesRojas-Tapias, D., A. Moreno-Galván A., S. Pardo-Díaz, M. Obando, D. Rivera, and R. Bonilla. 2012. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl. Soil Ecol. 61: 264-27spa
dcterms.referencesSaber, F., A. Abdelhafez, E. Hassanand, and E. Ramadan. 2015. Characterization of fluorescent pseudomonads isolates and their efficiency on the growth promotion of tomato plant. Ann. Agric. Sci . 60: 131-140spa
dcterms.referencesSahoo, R., M. Ansari, T. Dangar, S. Mohanty, and N. Tuteja. 2013. Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement. Protoplasma 251: 511-523spa
dcterms.referencesSarmiento, Y., A.H. Vergel, y D.M. Cárdenas. 2013. Evaluación de la estabilidad de Trichoderma sp. y Azotobacter sp. conservados por diferentes métodos. Rev. Colomb. Biotecnol . 15: 150-158spa
dcterms.referencesSeck P. A., A.Diagne, S.Mohanty, and M.C.S. Wopereis . 2012. Crops that feed the world 7: Rice Food Security 4: 7-24spa
dcterms.referencesSivakamasundari, R., and G. Usharani. 2012. Studies on the Influence of Pseudomonas fluorescens and Chemicals on the Biocontrol Sheath Blight Incidence in Rice. Int. J. Pharmac. Biol. 4: 973-977spa
dcterms.referencesSon, J. S., M. Sumayo, Y. J. Hwang, B. S. Kim, and S. Y. Ghim. 2014. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl. Soil Ecol . 73: 1-8.spa
dcterms.referencesSouza, R., J. Meyer, R. Schoenfeld, P. Beschoren da Costa, and L. Passaglia. 2015. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann. Microbiol. 65: 951-964spa
dcterms.referencesSundara-Rao, W. V. B., and M. K. Sinha. 1963. Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J. Agric. Sci. 33: 272-278spa
dcterms.referencesUribe-Vélez, D. 2011. El component microbiano del suelo como una herramienta para el desarrollo sostenible del cultivo del arroz. In: Uribe, D., y L. M. Melgarejo (eds). Ecología de Microorganismos Rizosféricos Asociados a Cultivos de Arroz de Tolima y Meta. Bogotá, D. C: Universidad Nacional de Colombia. pp: 19-21spa
dcterms.referencesVanegas, J., N. Florez-Zapata, y D. Uribe-Vélez. 2011. Bioprospección de microorganismos promotores de crecimiento vegetal para su aplicación en el cultivo de arroz. In: Uribe, D ., y L. M. Melgarejo (eds). Ecología de Microorganismos Rizosféricos Asociados a Cultivos de Arroz de Tolima y Meta . Bogotá, D. C: Universidad Nacional de Colombia . pp: 151-178spa
dcterms.referencesYu, X., X.Liu, T-H.Zhu, G-H. Liu, and C. Mao. 2012. Co-inoculation with phosphate-solubilzing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. Eur. J. Soil Biol. 50: 112-117.spa
dc.coverage.regionNorte de Santander , Colombia
dc.publisher.placeCiudad de Mexico , Mexicospa
dc.relation.citationeditionVol.51 No.4.(2017)spa
dc.relation.citationendpage391spa
dc.relation.citationissue4 (2017)spa
dc.relation.citationstartpage373spa
dc.relation.citationvolume51spa
dc.relation.citesFlorez-Márquez, J. D., Leal-Medina, G. I., Ardila-Leal, L. D., & Cárdenas-Caro, D. M. (2017). Isolation and characterization of rhizobacteria associated with rice crops (Oryza sativa L.) in Norte de Santander (Colombia). Agrociencia, 51(4), 373-391.
dc.relation.ispartofjournalAgrocienciaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalAzotobactereng
dc.subject.proposalPseudomonas putidaeng
dc.subject.proposalphosphates solubilizationeng
dc.subject.proposalbiological nitrogen fixationeng
dc.subject.proposalindoleacetic acideng
dc.subject.proposalsiderophoreseng
dc.subject.proposalsolubilización de fosfatosspa
dc.subject.proposalfijación biológica de nitrógenospa
dc.subject.proposalácido indolacéticospa
dc.subject.proposalsideróforosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem