Mostrar el registro sencillo del ítem

dc.contributor.authorGalvis, Fabian
dc.contributor.authorMoreno Rozo, laura Yolima
dc.date.accessioned2021-12-09T21:14:21Z
dc.date.available2021-12-09T21:14:21Z
dc.date.issued2018-08
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1782
dc.description.abstractMilax gagates is one of the main pests in the cultivation of lettuce, causing considerable economic losses. Control with molluscicides totally or partially eliminates the pest but generates a negative impact on the environment due to their high toxicity. Biological management also allows controlling the pest, but in a specific and safe way for the environment. Therefore, the objective of this work was to evaluate the toxic effect of Bacillus thuringiensis, with Cry1 genes, against M. gagates by means of a bioassay. Seventy-five soil samples were taken from several municipalities in Norte de Santander, Colombia, from where 58 isolated colonies of B. thuringiensis with similar characteristics were obtained. Of these colonies, five showed the presence of Cry1 genes, and were those used in the bioassays together with the control B. thuringiensis var. Kurstaki. The treatments caused 90-100 % lethality to M. gagates at a concentration of 500 μg∙mL-1. The calculated LD99 suggests the use of 820 μg∙mL-1 of the biopreparate to obtain 100 % lethality with any of the five isolates studied.eng
dc.description.abstractMilax gagates constituye una de las principales plagas en el cultivo de lechuga causando considerables pérdidas económicas. El control con molusquicidas elimina total o parcialmente la plaga, pero genera un impacto negativo en el ambiente por su alta toxicidad. El manejo biológico también permite el control de la plaga, pero de manera específica e inocua para el ambiente. Por ello, el objetivo de este trabajo fue evaluar el efecto tóxico de Bacillus thuringiensis, con genes Cry1, contra M. gagates mediante la elaboración de un bioensayo. Se tomaron 75 muestras de suelo de varios municipios del Norte de Santander, Colombia, de donde se obtuvieron 58 colonias aisladas de B. thuringiensis con características similares. De estas colonias, cinco evidenciaron la presencia de genes Cry1, y fueron las empleadas en los bioensayos junto con el control B. thuringiensis var. Kurstaki. Los tratamientos presentaron letalidad ante M. gagates de entre 90 y 100 % a una concentración de 500 μg∙mL-1. La CL99 calculada sugiere el uso de 820 μg∙mL-1 del biopreparado para obtener 100 % de letalidad con cualquiera de los cinco aislados estudiadosspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista Chapingo Serie Horticulturaspa
dc.relation.ispartofRevista Chapingo Serie Horticultura
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution License view the permissions of this licenseeng
dc.sourcehttps://revistas.chapingo.mx/horticultura/?section=articles&subsec=issues&numero=255&articulo=2479spa
dc.titleIdentificación de genes Cry1 en aislados de Bacillus thuringiensis y su efecto tóxico contra Milax gagates, plaga en lechuga (Lactuca sativa)eng
dc.typeArtículo de revistaspa
dcterms.referencesAbd-El-Ghany, A. M., & Abd-El-Ghany, N. M. (2017). Molluscicidal activity of Bacillus thuringiensis strains against Biomphalaria alexandrina snails. Beni-Suef University Journal of Basic and Applied Sciences, 6(4), 1-3. doi: 10.1016/j.bjbas.2017.05.003spa
dcterms.referencesArrieta, G., Hernández, A., & Espinoza, A. M. (2004). Diversity of Bacillus thuringiensis strains isolated from coffee plantations infested with the coffee berry borer Hypothenemus hampei. Revista de Biología Tropical, 52(3), 757-764. Retrieved from http://www.scielo.sa.cr/scielo.php?pid=S0034-77442004000300036&script=sci_arttextspa
dcterms.referencesBravo, A., Pacheco, S., Gómez, I., García-Gómez, B., Onofre, J., & Soberón, M. (2017). Insecticidal proteins from Bacillus thuringiensis and their mechanism of action. In: Fiuza, L., Polanczyk, R., & Crickmore, N. (Eds), Bacillus thuringiensis and Lysinibacillus sphaericus (pp. 53-66). Cham, Switzerland: Springer International Publishing. doi: 10.1007/978-3-319-56678-8_4spa
dcterms.referencesCarmona, A. (2002). Aislamiento y caracterización parcial de una cepa de Bacillus thurigiensis tóxica a Spodoptera frugiperda (Lepidoptera: Noctuidae). Bioagro, 14(1), 3-10. Retrieved from http://www.redalyc.org/pdf/857/85714101.pdfspa
dcterms.referencesCórdoba-Vargas, C. A., & León-Sicard, T. (2010). Efecto del manejo agroecológico y convencional sobre la fluctuación de babosa en cultivos de lechuga en Tenjo Cundinamarca. Acta Biológica Colombiana, 15(1), 115. doi: 10.15446/abcspa
dcterms.referencesCrickmore, N. (2017). Bacillus thuringiensis toxin classification. In: Fiuza, L., Polanczyk, R., & Crickmore, N. (Eds), Bacillus thuringiensis and Lysinibacillus sphaericus (pp. 41-52). Cham, Switzerland: Springer International Publishing . doi: 10.1007/978-3-319-56678-8_3spa
dcterms.referencesCrickmore, N., Bone, E. J., Williams, J. A., & Ellar, D. J. (1995). Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiology Letters, 131(3), 249-254. doi: 10.1111/j.1574-6968.1995.tb07784.xspa
dcterms.referencesDjenane, Z., Nateche, F., Amziane, M., Gomis-Cebolla, J., El-Aichar, F., Khorf, H., & Ferré, J. (2017). Assessment of the antimicrobial activity and the entomocidal potential of Bacillus thuringiensis isolates from Algeria. Toxins, 9(4), 139-158. doi: 10.3390/toxins9040139spa
dcterms.referencesFinney, D. J. (1971). Probit Analysis (pp. 68-72). Cambridge: Cambridge University Press.spa
dcterms.referencesFood and Agriculture Organization Corporate Statistical Database (FAOSTAT). (2014). FAO statistics division 2014. Retrieved from http://faostat.fao.org/spa
dcterms.referencesFrance, A., Gerding, M., Céspedes, C., & Cortez, M. (2002). Control de babosas (Deroceras reticulatum Müller) con Phasmarhabditis hermaphrodita Schneider (Nematoda: Rhabditidae) en suelos con sistema de cero labranza. Agricultura Técnica, 62(2), 181-190. doi: 10.4067/S0365-28072002000200001spa
dcterms.referencesGalvis-Serrano, F. (2013). Caracterización molecular de genes cry1, cry2, cry3 y cry4 en aislados de Bacillus thuringiensis y determinación de su actividad bioinsecticida en larvas de Aedes aegypti. Interciencia, 38(2), 128-131. Retrieved from http://www.redalyc.org/html/339/33926950004/spa
dcterms.referencesGao, M., Li, R., Dai, S., Wu, Y., & Yi, D. (2008). Diversity of Bacillus thuringiensis strains from soil in China and their pesticidal activities. Biological Control, 44(3), 380-388. doi: 10.1016/j.biocontrol.2007.11.011spa
dcterms.referencesGaravano, M. E., Manetti, P. L., López, A. N., Clemente, N. L., Salvio, C., & Faberi, A. J. (2013). Cebos molusquicidas y molusquicidas líquidos para el control de Deroceras reticulatum (Pulmonata: Stylomatophora), plaga en el cultivo de colza. Revista de Investigaciones Agropecuarias, 39(1), 60-66. Retrieved from http://www.redalyc.org/articulo.oa?id=86426063006spa
dcterms.referencesGodan, D. (1983). Pest slugs and snails. Biology and control (pp. 127-132). Berlin: Springer-Verlag.spa
dcterms.referencesGorashi, N. E., Tripathi, M., Kalia, V., & Gujar, G. T. (2014). Identification and characterization of the Sudanese Bacillus thuringiensis and related bacterial strains for their efficacy against Helicoverpa armigera and Tribolium castaneum. Indian Journal of Experimental Biology, 52(6), 637-649. Retrieved from https://pdfs.semanticscholar.org/90b8/534a663e65b296ad19ff9885e7bb57839406.pdfspa
dcterms.referencesHung, T. P., Truong, L. V., Binh, N. D., Frutos, R., Quiquampoix, H., & Staunton, S. (2016). Fate of insecticidal Bacillus thuringiensis Cry protein in soil: differences between purified toxin and biopesticide formulation. Pest Management Science, 72(12), 2247-2253. doi: 10.1002/ps.4262spa
dcterms.referencesIbarra, J. E., del Rincón, M. C., Ordúz, S., Noriega, D., Benintende, G., Monnerat, R., & Sánchez, J. (2003). Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Applied and Environmental Microbiology, 69(9), 5269-5274. doi: 10.1128/AEM.69.9.5269-5274.2003spa
dcterms.referencesIBM SPSS. (2014). Statistics for Windows ver. 23. Retrieved from https://www.ibm.com/us-en/spa
dcterms.referencesJain, D., Sunda, S. D., Sanadhya, S., Nath, D. J., & Khandelwal, S. K. (2017). Molecular characterization and PCR-based screening of cry genes from Bacillus thuringiensis strains. Biotech, 7(4), 1-8. doi: 10.1007/s13205-016-0583-7spa
dcterms.referencesKhodabandeh, F., Safaralizadeh, M. H., Safavi, S. A., & Aramideh, S. (2014). Virulence of some native Bacillus thuringiensis isolates against Ephestia kuehniella (Zeller) (Lep., Pyralidae) and Pieris brassicae (Lep., Pieridae) larvae isolated from stored products of Urmia city. Archives of Phytopathology and Plant Protection, 47(5), 610-614. doi: 10.1080/03235408.2013.816101spa
dcterms.referencesKienlen, J. C., Gertz, C., Briard, P., Hommay, G., & Chaufaux, J. (1996). Recherche de la toxicité de diverses souches de Bacillus thuringiensis Berliner vis-à-vis de trois espèces de limaces. Agronomie, 16(6), 347-353. doi: 10.1051/agro:19960602spa
dcterms.referencesMonnerat, R. G., Batista, A. C., de Medeiros, P. T., Martins, E. S., Melatti, V. M., Praça, L. B., & Falcao, R. (2007). Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biological Control, 41(3), 291-295. doi: 10.1016/j.biocontrol.2006.11.008spa
dcterms.referencesNeira, O., Muñoz, S., Stanley, V., Gosh, C., & Rosales, L. (2010). Cryptosporidium parvum in wild gastropods as bioindicators of fecal contamination in terrestrial ecosystems. Revista Chilena de Infectología, 27(3), 211-218. doi: 10.4067/S0716-10182010000300006spa
dcterms.referencesOsman, G. Y., & Mohamed, A. M. (1991). Bio-efficacy of bacterial insecticide, Bacillus thuringiensis Berl. as biological control agent against snails vectors of Schistosomiasis in Egypt. Anzeiger für Schädlingskunde, 64(7), 136-139. doi: 10.1007/BF01906005spa
dcterms.referencesPeña, G., Miranda-Rios, J., de la Riva, G., Pardo-López, L., Soberón, M., & Bravo, A. (2006). A Bacillus thuringiensis S-layer protein involved in toxicity against Epilachna varivestis (Coleoptera: Coccinellidae). Applied and environmental microbiology, 72(1), 353-360. doi: 10.1128/AEM.72.1.353-360.2006spa
dcterms.referencesPitre, L., Hernández-Fernández, J., & Bernal, J. (2008). Toxicidad de δ-endotoxinas recombinantes de Bacillus thuringiensis sobre larvas de la polilla guatemalteca (Tecia solanivora) (Lepidóptera: Gelechiidae). Revista Colombiana de Biotecnología, 10(2), 85-96.spa
dcterms.referencesRojas-Arias, A. C., López-Pazos, S. A., & Chaparro-Giraldo, A. (2013). Actividad biológica de Bacillus thuringiensis sobre la polilla guatemalteca de la papa, Tecia solanivora Povolny (Lepidoptera: Gelechiidae). Revista Mutis, 3(2), 31-42. doi: 10.21789/22561498.883spa
dcterms.referencesSalama, H. S., Abd-El-Ghany, N. A., & Saker, M. M. (2015). Diversity of Bacillus thuringiensis isolates from Egyptian soils as shown by molecular characterization. Journal of Genetic Engineering and Biotechnology, 13(2), 101-109. doi: 10.1016/j.jgeb.2015.10.001spa
dcterms.referencesSchünemann, R., Knaak, N., & Fiuza, L. M. (2014). Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiology, 2014, 1-13. doi: 10.1155/2014/135675spa
dcterms.referencesSerre, M. (2005). Manejo de babosas en el cultivo de girasol en siembra directa. Argentina: Pioneer Argentina. Retrieved from http://www.pioneer.com/CMRoot/International/Argentina_Intl/AGRONOMIA/con_agric_inv_lotes/IL_Manejobabosa_girasol_05.pdfspa
dcterms.referencesVan Frankenhuyzen, K. (2013). Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. Journal of Invertebrate Pathology, 114(1), 76-85. doi: 10.1016/j.jip.2013.05.010spa
dcterms.referencesVargas-Arcila, M., Cartagena-Valenzuela, J. R., Franco, G., Correa-Londoño, G. A., Quintero-Vásquez, L. M., & Gaviria-Montoya, C. A. (2017). Changes in the physico-chemical properties of four lettuce (Lactuca sativa L.) varieties during storage. Corpoica Cienc Tecnol Agropecuaria, 18(2), 257-273. doi: 10.21930/rcta.vol18_num2_art:632257-273spa
dcterms.referencesVázquez-Ramírez, M. F., Rangel-Núñez, J. C., Ibarra, J. E., & del Rincón-Castro, M. C. (2015). Evaluación como agentes de control biológico y caracterización de cepas mexicanas de Bacillus thuringiensis contra el gusano cogollero del maíz Spodoptera frugiperda (Lepidotera: Noctuidae). Interciencia, 40(6). Retrieved from http://www.redalyc.org/pdf/339/33938675006.pdfspa
dcterms.referencesZothansanga, L., Kumar, N. S., & Gurusubramanian, G. (2011). PCR pathotyping of native Bacillus thuringiensis from Mizoram, India. Sciense Vision, 11(3), 171-176. Retrieved from https://pdfs.semanticscholar.org/0b59/466b7c801f3abc8308c34f4f39e9b7130eba.pdfspa
dcterms.referencesZurbrügg, C., & Nentwig, W. (2009). Ingestion and excretion of two transgenic Bt corn varieties by slugs. Transgenic Research, 18(2), 215-225. doi: 10.1007/s11248-008-9208-1spa
dc.identifier.doihttp://dx.doi.org/10.5154/r.rchsh.2017.07.025
dc.publisher.placeCiudad de Mexico , Mexicospa
dc.relation.citationeditionVol.24 No.2.(2018)spa
dc.relation.citationendpage106spa
dc.relation.citationissue2 (2018)spa
dc.relation.citationstartpage97spa
dc.relation.citationvolume24spa
dc.relation.citesGalvis, F., & Moreno, L. (2018). Identification of Cry1 genes in Bacillus thuringiensis isolates and their toxic effect against Milax gagates, a pest on lettuce (Lactuca sativa). Revista Chapingo. Serie horticultura, 24(2), 97-106.
dc.relation.ispartofjournalRevista Chapingo Serie Horticulturaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalbiological controleng
dc.subject.proposalslugseng
dc.subject.proposalmolluscicideseng
dc.subject.proposalbioassayseng
dc.subject.proposalcontrol biológicospa
dc.subject.proposalbabosasspa
dc.subject.proposalmolusquicidasspa
dc.subject.proposalbioensayosspa
dc.title.translatedIdentificación de genes Cry1 en aislados de Bacillus thuringiensis y su efecto tóxico contra Milax gagates, plaga en lechuga (Lactuca sativa)
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem