Mostrar el registro sencillo del ítem

dc.contributor.authorValencia, Guillermo
dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.contributor.authorDuarte Forero, Jorge
dc.date.accessioned2021-12-07T21:27:26Z
dc.date.available2021-12-07T21:27:26Z
dc.date.issued2019-10-31
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1732
dc.description.abstractTo contribute to the economic viability of waste heat recovery systems application based on the organic Rankine cycle (ORC) under real operation condition of natural gas engines, this article presents a thermoeconomic optimization results using the particle swarm optimization (PSO) algorithm of a simple ORC (SORC), regenerative ORC (RORC), and double-stage ORC (DORC) integrated to a GE Jenbacher engine type 6, which have not been reported in the literature. Thermoeconomic modeling was proposed for the studied configurations to integrate the exergetic analysis with economic considerations, allowing to reduce the thermoeconomic indicators that most influence the cash flow of the project. The greatest opportunities for improvement were obtained for the DORC, where the results for maximizing net power allowed the maximum value of 99.52 kW, with 85% and 80% efficiencies in the pump and turbine, respectively, while the pinch point temperatures of the evaporator and condenser must be 35 and 16 ◦C. This study serves as a guide for future research focused on the thermoeconomic performance optimization of an ORC integrated into a natural gas engine.eng
dc.format.extent21 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherEnergiesspa
dc.relation.ispartofEnergies
dc.rights© 1996-2021 MDPI (Basel, Switzerland) unless otherwise statedeng
dc.sourcehttps://www.mdpi.com/1996-1073/12/21/4165spa
dc.titleThermoeconomic optimization with PSO algorithm of waste heat recovery systems based on organic Rankine cycle system for a natural gas engineeng
dc.typeArtículo de revistaspa
dcterms.referencesWang, H.; Zhang, H.; Yang, F.; Song, S.; Chang, Y.; Bei, C.; Yang, K. Parametric optimization of regenerative organic rankine cycle system for diesel engine based on particle swarm optimization. Energies 2015, 8, 9751–9776.spa
dcterms.referencesJavanshir, A.; Sarunac, N. Thermodynamic analysis of a simple Organic Rankine Cycle. Energy 2017, 118, 85–96.spa
dcterms.referencesLandelle, A.; Tauveron, N.; Haberschill, P.; Revellin, R.; Colasson, S. Organic Rankine cycle design and performance comparison based on experimental database. Appl. Energy 2017, 204, 1172–1187.spa
dcterms.referencesHuang, H.; Zhu, J.; Yan, B. Comparison of the performance of two different Dual-loop organic Rankine cycles (DORC) with nanofluid for engine waste heat recovery. Energy Convers. Manag. 2016, 126, 99–109.spa
dcterms.referencesShi, L.; Shu, G.; Tian, L.; Deng, S. A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR). Renew. Sustain. Energy Rev. 2018, 92, 95–110.spa
dcterms.referencesLion, S.; Taccani, R.; Vlaskos, I.; Scrocco, P.; Vouvakos, X.; Kaiktsis, L. Thermodynamic analysis of waste heat recovery using Organic Rankine Cycle (ORC) for a two-stroke low speed marine Diesel engine in IMO Tier II and Tier III operation. Energy 2019, 183, 48–60.spa
dcterms.referencesLiu, P.; Shu, G.; Tian, H. How to approach optimal practical Organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery. Energy 2019, 174, 543–552.spa
dcterms.referencesBraimakis, K.; Karellas, S. Energetic optimization of regenerative Organic Rankine Cycle (ORC) configurations. Energy Convers. Manag. 2018, 159, 353–370.spa
dcterms.referencesBraimakis, K.; Karellas, S. Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities. Energy 2017, 121, 570–598.spa
dcterms.referencesJavanshir, A.; Sarunac, N.; Razzaghpanah, Z. Thermodynamic analysis of a regenerative organic Rankine cycle using dry fluids. Appl. Therm. Eng. 2017, 123, 852–864.spa
dcterms.referencesBraimakis, K.; Karellas, S. Exergetic optimization of double stage Organic Rankine Cycle (ORC). Energy 2018, 149, 296–313.spa
dcterms.referencesYang, F.; Cho, H.; Zhang, H.; Zhang, J. Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery. Appl. Energy 2017, 205, 1100–1118.spa
dcterms.referencesHuang, H.; Zhu, J.; Deng, W.; Ouyang, T.; Yan, B.; Yang, X. Influence of exhaust heat distribution on the performance of dual-loop organic Rankine Cycles (DORC) for engine waste heat recovery. Energy 2018, 151, 54–65.spa
dcterms.referencesFontalvo, A.; Solano, J.; Pedraza, C.; Bula, A.; Quiroga, A.G.; Padilla, R.V. Energy, exergy and economic evaluation comparison of small-scale single and dual pressure organic Rankine cycles integrated with low-grade heat sources. Entropy 2017, 19, 476.spa
dcterms.referencesValencia, G.; Fontalvo, A.; Cárdenas, Y.; Duarte, J.; Isaza, C. Energy and Exergy Analysis of Different Exhaust Waste Heat Recovery Systems for Natural Gas Engine Based on ORC. Energies 2019, 12, 2378.spa
dcterms.referencesValencia, G.; Núñez, J.; Duarte, J. Multiobjective Optimization of a Plate Heat Exchanger in a Waste Heat Recovery Organic Rankine Cycle System for Natural Gas Engines. Entropy 2019, 21, 655.spa
dcterms.referencesVal, C.G.F.; Oliveira, S., Jr. Deep Water Cooled ORC for Offshore Floating Oil Platform Applications. Int. J. Thermodyn. 2017, 20, 229–237.spa
dcterms.referencesBejan, A.; Tsatsaronis, G.; Moran, M.J. Thermal Design and Optimization, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1996.spa
dcterms.referencesEl-emam, R.S.; Dincer, I. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 2013, 59, 435–444.spa
dcterms.referencesCalise, F.; Capuozzo, C.; Carotenuto, A.; Vanoli, L. Thermoeconomic analysis and off-design performance of an organic Rankine cycle powered by medium-temperature heat sources. Sol. Energy 2014, 103, 595–609.spa
dcterms.referencesZare, V. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Convers. Manag. 2015, 105, 127–138.spa
dcterms.referencesZhang, X.; Cao, M.; Yang, X.; Guo, H.; Wang, J. Economic Analysis of Organic Rankine Cycle Using R123 and R245fa as Working Fluids and a Demonstration Project Report. Appl. Sci. 2019, 9, 288.spa
dcterms.referencesHan, Z. Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle. Energies 2017, 10, 1593.spa
dcterms.referencesBaral, S.; Kim, D.; Yun, E.; Kim, K.C. Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC) System. Entropy 2015, 17, 2039–2061.spa
dcterms.referencesPreißinger, M.; Brüggemann, D. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities. Energies 2017, 10, 269.spa
dcterms.referencesTchanche, B. Low Grade Heat Conversion into Power Using Small Scale Organic Rankine Cycles. Ph.D. Thesis, Agricultural University of Athens, Athens, Greece, 2010.spa
dcterms.referencesPili, R.; Romagnoli, A.; Spliethoff, H.; Wieland, C. Techno-economic analysis of waste heat recovery with ORC from fluctuating industrial sources. Energy Procedia 2017, 129, 503–510.spa
dcterms.referencesFeng, Y.; Zhang, Y.; Li, B.; Yang, J.; Shi, Y. Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC). Energy Convers. Manag. 2015, 96, 58–71.spa
dcterms.referencesDong, Y.; Tang, J.; Xu, B.; Wang, D. An application of swarm optimization to nonlinear programming. Comput. Math. Appl. 2005, 49, 1655–1668.spa
dcterms.referencesRao, R.V.; Patel, V.K. Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm. Int. J. Therm. Sci. 2010, 49, 1712–1721.spa
dcterms.referencesQuoilin, S.; Declaye, S.; Tchanche, B.F.; Lemort, V. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Appl. Therm. Eng. 2011, 31, 2885–2893.spa
dcterms.referencesLecompte, S.; Huisseune, H.; Van den Broek, M.; De Schampheleire, S.; De Paepe, M. Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system. Appl. Energy 2013, 111, 871–881.spa
dcterms.referencesCavallaro, F.; Zavadskas, E.K.; Streimikiene, D. Concentrated solar power (CSP) hybridized systems. Ranking based on an intuitionistic fuzzy multi-criteria algorithm. J. Clean. Prod. 2018, 179, 407–416.spa
dcterms.referencesToffolo, A.; Lazzaretto, A.; Manente, G.; Paci, M. A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems. Appl. Energy 2014, 121, 219–232.spa
dcterms.referencesPierobon, L.; Nguyen, T.-V.; Larsen, U.; Haglind, F.; Elmegaard, B. Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform. Energy 2013, 58, 538–549.spa
dcterms.referencesRahman, I.; Das, A.; Mankar, R.; Kulkarni, B. Evaluation of repulsive particle swarm method for phase equilibrium and phase stability problems. Fluid Phase Equilib. 2009, 282, 65–67.spa
dcterms.referencesGill, M.; Kaheil, Y.; Khalil, A.; McKee, M.; Bastidas, L. Multiobjective Particle Swarm Optimization for Parameter Estimation in Hydrology. Water Resour. Res. 2006, 42.spa
dcterms.referencesMathwork, “FMINCON Algorithms,” 2012. Available online: https://www.mathworks.com/help/optim/ug/ choosing-the-algorithm.html (accessed on 2 April 2019).spa
dcterms.referencesValencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic Analysis of Different Exhaust Waste-Heat Recovery Systems for Natural Gas Engine Based on ORC. Appl. Sci. 2019, 9, 4017.spa
dc.identifier.doihttps://doi.org/10.3390/en12214165
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol.12 No.21.(2019)spa
dc.relation.citationendpage21spa
dc.relation.citationissue21(2019)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume12spa
dc.relation.citesValencia Ochoa, G., Acevedo Peñaloza, C., & Duarte Forero, J. (2019). Thermoeconomic optimization with PSO algorithm of waste heat recovery systems based on organic rankine cycle system for a natural gas engine. Energies, 12(21), 4165.
dc.relation.ispartofjournalEnergiesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalthermoeconomic analysiseng
dc.subject.proposalexergy analysiseng
dc.subject.proposalPSO methodeng
dc.subject.proposalgas engineeng
dc.subject.proposalwaste heat recoveryeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem