Mostrar el registro sencillo del ítem

dc.contributor.authorCarmona, Mauricio
dc.contributor.authorPérez, Eduar
dc.contributor.authorPalacio, Mario
dc.date.accessioned2021-12-07T20:45:37Z
dc.date.available2021-12-07T20:45:37Z
dc.date.issued2019-03-05
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1729
dc.description.abstractIn this study, an adsorbent material made up of a mixture of activated carbon, expanded graphite and lithium chloride, is proposed to evaluate its thermal properties. Ratio effect between mixing components, component particle size, and compaction pressure on porosity and thermal conductivity of composite material was experimentally evaluated. Axial and radial thermal conductivity were evaluated by ASTM C177-13 standard using the hot plate and hot wire method for the respective axial and radial conductivities. Experimental results indicate that the highest porosity reaches 0.78 and is produced with a 70% mixing ratio of activated carbon mass, 10% of LiCl mass, and 20% of expanded graphite mass. With the levels used in experimental design, axial and radial thermal conductivity obtain maximum values of 51.2 W/m K and 11.9 W/m K, respectively. After optimization process based on design of experiments for mixtures, axial and radial conductivity reach their highest values of 76.5 W/m K and 13.8 W/m K, respectively, when mixture is elaborated with a proportion of 30% activated carbon, 40% expanded graphite and 30% Lithium Chloride. This study shows that conductivity results do not vary significantly due to tests temperature.eng
dc.format.extent08 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherApplied Thermal Engineeringspa
dc.relation.ispartofApplied Thermal Engineering
dc.rights© 2019 Elsevier Ltd. All rights reserved.eng
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S1359431118355261?via%3Dihubspa
dc.titleExperimental evaluation of porosity, axial and radial thermal conductivity, of an adsorbent material composed by mixture of activated carbon, expanded graphite and lithium chlorideeng
dc.typeArtículo de revistaspa
dcterms.referencesH.Z. Hassan, A.A. Mohamad, A review on solar-powered closed physisorption cooling systems, Renew. Sustain. Energy Rev. 16 (5) (2012) 2516–2538.spa
dcterms.referencesI. Sarbu, C. Sebarchievici, General review of solar-powered closed sorption refrigeration systems, Energy Convers. Manag. 105 (2015) 403–422.spa
dcterms.referencesH.Z. Hassan, A.A. Mohamad, H.A. Al-Ansary, Development of a continuously operating solar-driven adsorption cooling system: thermodynamic analysis and parametric study, Appl. Therm. Eng. 48 (2012) 332–341.spa
dcterms.referencesJ. Han, K. Cho, K.-H. Lee, H. Kim, Porous graphite matrix for chemical heat pumps, Carbon N. Y. 36 (12) (1998) 1801–1810.spa
dcterms.referencesX. Zheng, L.W. Wang, R.Z. Wang, T.S. Ge, T.F. Ishugah, Thermal conductivity, pore structure and adsorption performance of compact composite silica gel, Int. J. Heat Mass Transf. 68 (2014) 435–443.spa
dcterms.referencesJ.K. Kiplagat, R.Z. Wang, R.G. Oliveira, T.X. Li, Lithium chloride - expanded graphite composite sorbent for solar powered ice maker, Sol. Energy 84 (9) (2010) 1587–1594.spa
dcterms.referencesR.G. Oliveira, R.Z. Wang, J.K. Kiplagat, C.Y. Wang, Optimal placement of d resorption systems and for chemisorption air conditioners driven by low generation temperature, Renew. Energy 34 (12) (2009) 2757–2764.spa
dcterms.referencesS. Mitra, M. Muttakin, K. Thu, B. Baran, Study on the influence of adsorbent particle size and heat exchanger aspect ratio on dynamic adsorption characteristics, Appl. Therm. Eng. J. 133 (2018) 764–773.spa
dcterms.referencesN. Yu, R.Z. Wang, Z.S. Lu, L.W. Wang, Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage, Int. J. Heat Mass Transf. 84 (2015) 660–670.spa
dcterms.referencesH. Demir, M. Mobedi, S. Ülkü, Effects of porosity on heat and mass transfer in a granular adsorbent bed, Int. Commun. Heat Mass Transf. 36 (4) (2009) 372–377.spa
dcterms.referencesK. Fayazmanesh, S. Salari, M. Bahrami, Effective thermal conductivity modeling of consolidated sorption composites containing graphite flakes, Int. J. Heat Mass Transf. 115 (2017) 73–79.spa
dcterms.referencesA.A. Askalany, S.K. Henninger, M. Ghazy, B.B. Saha, Effect of improving thermal conductivity of the adsorbent on performance of adsorption cooling system, Appl. Therm. Eng. 110 (2017) 695–702.spa
dcterms.referencesL. Jiang, L.W. Wang, R.Z. Wang, Investigation on thermal conductive consolidated composite CaCl2 for adsorption refrigeration, Int. J. Therm. Sci. 81 (1) (2014) 68–75.spa
dcterms.referencesL.W. Wang, S.J. Metcalf, R.E. Critoph, R. Thorpe, Z. Tamainot-Telto, Thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid, Carbon N. Y. 49 (14) (2011) 4812–4819.spa
dcterms.referencesB. Tian, Z.Q. Jin, L.W. Wang, R.Z. Wang, Permeability and thermal conductivity of compact chemical and physical adsorbents with expanded natural graphite as host matrix, Int. J. Heat Mass Transf. 55 (15–16) (2012) 4453–4459.spa
dcterms.referencesS. Wu, T.X. Li, T. Yan, Y.J. Dai, R.Z. Wang, High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage, Int. J. Heat Mass Transf. 102 (2016) 733–744.spa
dcterms.referencesX. Xiao, P. Zhang, M. Li, Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage, Energy Convers. Manag. 105 (2015) 272–284.spa
dcterms.referencesF. Cheng, et al., Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage, Appl. Therm. Eng. 120 (Jun.) (2017) 107–114.spa
dcterms.referencesY. Yang, Y. Pang, Y. Liu, H. Guo, Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving, Mater. Lett. 216 (Apr.) (2018) 220–223.spa
dcterms.referencesY. Yuan, H. Bao, Z. Ma, Y. Lu, A.P. Roskilly, “Investigation of equilibrium and dynamic performance of SrCl2-expanded graphite composite in chemisorption refrigeration system,” vol. 147, no. January 2018; 2019, pp. 52–60.spa
dcterms.referencesH. Heber Green, Studies on the viscosity and conductivity of some aqueous solutions. Part I. Solutions of sucrose, hydrogen chloride, and lithium chloride, J. Chem. Soc. Trans. 1 (1908) 2023–2048.spa
dcterms.referencesD. Menard, X. Py, N. Mazet, Activated carbon monolith of high thermal conductivity for adsorption processes improvement Part A: adsorption step, Chem. Eng. Process. 44 (2005) 1029–1038.spa
dcterms.referencesH. Kuwagaki, T. Meguro, J. Tatami, K. Komeya, K. Tamura, An improvement of thermal conduction of activated carbon by adding graphite, J. Mater. Sci. 38 (15) (2003) 3279–3284.spa
dcterms.referencesASTM-C177-13, “Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate,” Annu. B. ASTM Stand., 2014, pp. 1–23.spa
dcterms.referencesASTM C136, “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” 2006.spa
dcterms.referencesR.G. Oliveira, R.Z. Wang, C. Wang, Evaluation of the cooling performance of a consolidated expanded graphite-calcium chloride reactive bed for chemisorption icemaker, Int. J. Refrig. 30 (1) (2007) 103–112.spa
dcterms.referencesY. Yang, Y. Pang, Y. Liu, H. Guo, Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving, Mater. Lett. 216 (2018) 220–223.spa
dcterms.referencesY. Yuan, H. Bao, Z. Ma, Y. Lu, A.P. Roskilly, Investigation of equilibrium and dynamic performance of SrCl2-expanded graphite composite in chemisorption refrigeration system, Appl. Therm. Eng. 147 (2019,) 52–60 January 2018.spa
dcterms.referencesN. Yu, R.Z. Wang, Z.S. Lu, L.W. Wang, Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage, Chem. Eng. Sci. 111 (2014) 73–84.spa
dcterms.referencesI.I. El-sharkawy, A. Pal, T. Miyazaki, B. Baran, A study on consolidated composite adsorbents for cooling application, Appl. Therm. Eng. J. 98 (2016) 1214–1220.spa
dcterms.referencesL.W. Wang, S.J. Metcalf, R.E. Critoph, Z. Tamainot-telto, R. Thorpe, Two types of natural graphite host matrix for composite activated carbon adsorbents, Appl. Therm. Eng. J. 50 (2013) 1652–1657.spa
dcterms.referencesK. Fayazmanesh, C. Mccague, M. Bahrami, Consolidated adsorbent containing graphite flakes for heat-driven water sorption cooling systems, Appl. Therm. Eng. J. 123 (2017) 753–760.spa
dcterms.referencesF.P. Incropera, T.L. Bergman, A.S. Lavine, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 2011.spa
dcterms.referencesI.M. Abdulagatov, N.D. Azizov, Densities and apparent molar volumes of concentrated aqueous LiCl solutions at high temperatures and high pressures, Chem. Geol. 230 (1–2) (2006) 22–41.spa
dc.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2019.01.021
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol.150 (2019)spa
dc.relation.citationendpage463spa
dc.relation.citationissue(2019)spa
dc.relation.citationstartpage456spa
dc.relation.citationvolume150spa
dc.relation.citesCarmona, M., Pérez, E., & Palacio, M. (2019). Experimental evaluation of porosity, axial and radial thermal conductivity, of an adsorbent material composed by mixture of activated carbon, expanded graphite and lithium chloride. Applied Thermal Engineering, 150, 456-463.
dc.relation.ispartofjournalApplied Thermal Engineeringspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalThermal conductivityeng
dc.subject.proposalPorosityeng
dc.subject.proposalMixture adsorbent materialeng
dc.subject.proposalActivated carboneng
dc.subject.proposalExpanded graphiteeng
dc.subject.proposalLithium chlorideeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem