Mostrar el registro sencillo del ítem


Discos de freno: Una revisión tecnológica de su análisis y evaluación

dc.contributor.authorGarcía León, Ricardo Andres
dc.contributor.authorFlorez, Eder
dc.contributor.authorSuárez Quiñones, Alvaro Enrique
dc.date.accessioned2021-12-07T19:29:49Z
dc.date.available2021-12-07T19:29:49Z
dc.date.issued2019-10-31
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1724
dc.description.abstractBraking systems are undoubtedly the most important component for road safety, since it determines the total or partial stop of a vehicle and, therefore, guarantees the physical integrity of passengers. Normally, the front brake discs and the remaining percentage absorb 70% of the kinetic energy produced within a vehicle by the rear brake discs, which tend to have the formof a drum brake. These systems benefit from friction to stop a moving vehicle, under the umbrella of hydraulic pressure that pushes the brake pads against the iron-cast disk. In this document, concepts of famous authors around the world on analysis and evaluation of brake discs are provided, which are carried out using a descriptive methodology and an estimation of the characteristics of the brake disc. The review is carried out in computer assisted design through several existing CAD software in the industry, as the main methodology applied to the development of certain research projects, where different geometric characteristics of the brake discs are considered, as well as problems related to wear and corrosion. This research project has shown that it is vital to incorporate existing computer assisted design software to predict performance, improve components and optimize the functionality of the brake system. In this way, road traffic safety and systems efficiency are achieved, which are a matter of great importance for the industry. It is vital to analyze brake systems through Finite Element Analysis (FEA), with the intention of achieving a broader vision of its performance, since the information collected reveals that the geometric characteristics of the brake and cooling ducts influence the heat dissipation. It depends on the form, the type of material and the application, the heat generated between the pad and the brake. Therefore, the heat is dissipated rapidly according to the analysis performed mathematically by the researchers, which are compared with the made in computer assisted design software.eng
dc.description.abstractLos sistemas de frenos son, sin duda, el componente más importante para la seguridad vial, dado que determina la detención total o parcial de un vehículo y, por lo tanto, garantiza la integridad física de los pasajeros. Normalmente, el 70 % de la energía cinética producida dentro de un vehículo es absorbida por los discos de freno delanteros, y el porcentaje restante por los discos de freno hacia atrás, que tiende a tener forma de freno de tambor. Estos sistemas se benefician de la fricción para detener un vehículo en movimiento, bajo el paraguas de la presión hidráulica que empuja las pastillas de freno contra el disco fundido con hierro. En el presente documento, se proporcionan conceptos de autores famosos en todo el mundo obre análisis y evaluación de discos de freno, que se realizan mediante una metodología descriptiva y una estimación de las características del disco de freno. La revisión se lleva a cabo en diseño asistido por computadora a través de varios softwares CAD existentes en la industria, como la principal metodología aplicada al desarrollo de ciertos proyectos de investigación, donde se tienen en cuenta distintas características geométricas de los discos de freno, así como problemas relacionados con el desgaste y la corrosión. Este proyecto de investigación ha demostrado que es vital incorporar el software de diseño asistido por computadora existente para predecir el rendimiento, mejorar los componentes y optimizar la funcionalidad del sistema de frenos. De esta forma, se logran la seguridad del tráfico vial y la eficiencia de los sistemas, que son una cuestión de gran importancia para la industria. Es vital analizar los sistemas de frenos a través del Análisis de Elementos Finitos (AEF), con la intención de alcanzar una visión más amplia de su desempeño, ya que la información recopilada revela que las características geométricas de los conductos de freno y enfriamiento influyen en la disipación del calor. Depende de la forma, el tipo de material y la aplicación, el calor generado entre la almohadilla y el freno. Por lo tanto, el calor se disipa rápidamente de acuerdo con el análisis realizado matemáticamente por los investigadores, que se comparan con los realizados en el software de diseño asistido por computadora.spa
dc.format.extent18 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInformador Técnicospa
dc.relation.ispartofInformador Técnico
dc.rightsEsta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.eng
dc.sourcehttp://revistas.sena.edu.co/index.php/inf_tec/article/view/1766spa
dc.titleBrake discs: A technological review from its analysis and assessmenteng
dc.titleDiscos de freno: Una revisión tecnológica de su análisis y evaluaciónspa
dc.typeArtículo de revistaspa
dcterms.referencesAbhang, Swapnil; Bhaskar, D. P. (2014). Design and Analysis of Disc Brake.International Journal of Engineering Trends and Technology, 8(4), 165–167. https://doi.org/10.14445/22315381/IJETT-V8P231spa
dcterms.referencesAcosta-Alvarez, Iovanny; Pareja-Dangond, Diego (2019). Construcción de un banco de pruebas para el analisis del comportamiento al desgaste de los sistemas de frenos de disco automotrices (tesis de pregrado). Universidad Francisco de Paula Santander Ocaña, Colombia.spa
dcterms.referencesAguayo-Ortiz, A.; Cardoso-Sakamoto, H.; Echeverría-Arjonilla, C.; Porta-Zepeda, D.; Stern-Forgach, C.; Monsivais-Galindo G. (2016). Calibration of a Background Oriented Schlieren (BOS). In Klapp, Jaime; Di G, Leonardo; Medina, Abraham; López, Abel; Ruiz-Chavarría, Gerardo (Eds.), Recent Advances in Fluid Dynamics with Environmental Applications (pp.103-114). Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-27965-7_8spa
dcterms.referencesAndreaus, U.; Casini, P. (2001). Dynamics of friction oscillators excited by a moving base and/or driving force. Journal of Sound and Vibration, 245(4), 685-699. https://doi.org/10.1006/jsvi.2000.3555spa
dcterms.referencesBagnoli, F.; Dolce, F.; Bernabei, M. (2009). Thermal fatigue cracks of fire fighting vehicles gray iron brake discs. Engineering Failure Analysis, 16(1), 152-163. https://doi.org/10.1016/j.engfailanal.2008.01.009spa
dcterms.referencesBaron-Saiz, C.; Ingrassia, T.; Nigrelli, V.; Ricotta, V. (2015). Thermal stress analysis of different full and ventilated disc brakes. Frattura Ed Integrita Strutturale, 9(34), 608–621. doi: 10.3221/IGF-ESIS.34.67spa
dcterms.referencesBelhocine, Ali; Abdullah, O. I. (2014). Finite Element Analysis of Automotive Disk Brake and Pad in Frictional Model Contact. IJMMME, 5, 32-62. doi: 10.4018/IJMMME.2015100103spa
dcterms.referencesBelhocine, A.; Bouchetara, M. (2012a). Thermomechanical Behaviour of Dry Contacts in Disc Brake Rotor with a Grey Cast Iron Composition. Transactions of the Indian Institute of Metals, 65(3), 231-238. https://doi.org/10.1007/s12666-012-0129-6spa
dcterms.referencesBelhocine, A.; Bouchetara, M. (2012b). Thermomechanical Behaviour of Dry Contacts in Disc Brake Rotor with a Grey Cast Iron Composition. Transactions of the Indian Institute of Metals, 65(3), 231-238. https://doi.org/10.1007/s12666-012-0129-6spa
dcterms.referencesBelhocine, A.; Bouchetara, M. (2013a). Temperature and thermal stresses of vehicles gray cast brake. Journal of applied research and technology, 11(5), 674–682. https://doi.org/10.1016/S1665-6423(13)71575-Xspa
dcterms.referencesBelhocine, A.; Bouchetara, M. (2013b). Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermomechanical coupling model. Ain Shams Engineering Journal, 4(3), 475-483. https://doi.org/10.1016/j.asej.2012.08.005spa
dcterms.referencesBelhocine, Ali; Omar, Wan (2016). A numerical parametric study of mechanical behavior of dry contact slipping on the disc–pads interface. Alexandria engineering journal, 55(2), 1127-1141. https://doi.org/10.1016/j.aej.2016.03.025spa
dcterms.referencesBerni, Fabio; Cicalese, Giuseppe; Fontanesi, Stefano (2017). A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines. Applied Thermal Engineering, 115, 1045-1062. https://doi.org/10.1016/j.applthermaleng.2017.01.055spa
dcterms.referencesBlau, Peter; Jolly, Brian; Qu, Jun; Peter, William; Blue, Craig (2007). Tribological investigation of titanium-based materials for brakes. Wear, 263(7-12), 1202-1211. https://doi.org/10.1016/j.wear.2006.12.015spa
dcterms.referencesBlau, Peter; Meyer III, Harry (2003). Characteristics of wear particles produced during friction tests of conventional and unconventional disc brake materials. Wear, 255(7-12), 1261-1269. https://doi.org/10.1016/S0043-1648(03)00111-Xspa
dcterms.referencesChi, Zhongzhe; He, Yuping; Naterer, Greg (2009). Convective heat transfer optimization of automotive brake discs,” SAE Int. J. Passeng. Cars - Mech. Syst., 2(1), 961-969. https://doi.org/10.4271/2009-01-0859spa
dcterms.referencesDhaubhadel, M. N. (1996). CFD applications in the automotive industry (invited keynote presentation). Journal of fluids engineering, 118(4), 647-653. https://doi.org/10.1115/1.2835492spa
dcterms.referencesEchavez-Díaz, Robert; Quintero-Orozco, Abner (2017). Estudio experimental del comportamiento dinámico del fluido del aire a través de un disco de freno automotriz con pilares de ventilación tipo NACA 66-209 (tesis de pregrado), Universidad Francisco de Paula Santander, Ocaña, Colombia.spa
dcterms.referencesGarcía-León, Ricardo (2014). Evaluación del comportamiento de los frenos de disco de los vehículos a partir del análisis de la aceleración del proceso de corrosión (tesis de pregrado). Universidad Francisco de Paula Santander, Santander, Colombia.spa
dcterms.referencesGarcía-León, Ricardo (2017). Thermal study in three vented brake discs, using the finite element analysis. DYNA, 84(200), 19-27. https://doi.org/10.15446/dyna.v84n200.55663spa
dcterms.referencesGarcía-León, Ricardo; Acosta-Pérez, María; Flórez-Solano, Eder (2015). Análisis del comportamiento de los frenos de disco de los vehículos a partir de la aceleración del proceso de corrosión. Tecnura, 19(45), 53–63. https://doi.org/10.14483/udistrital.jour.tecnura.2015.3.a04spa
dcterms.referencesGarcía-León, Ricardo; Echavez-Díaz, Robert; Flórez-Solano, Eder (2018). Análisis termodinámico de un disco de freno automotriz con pilares de ventilación tipo NACA 66-209. INGECUC, 14(2), 9–18. https://doi.org/10.17981/ingecuc.14.2.2018.01spa
dcterms.referencesGarcía-León, Ricardo; Flórez-Solano, Eder (2016). Estudio analítico de la transferencia de calor por convección que afectan los frenos de disco ventilados. Tecnura, 20(1), 15–30.spa
dcterms.referencesGarcía-León, Ricardo; Flórez-Solano, Eder (2017). Dynamic analysis of three autoventilated disc brakes. Ingeniería e Investigación, 37(3), 102-114. https://doi.org/10.15446/ing.investig.v37n3.63381spa
dcterms.referencesGarcía-León, Ricardo; Flórez-Solano, Eder; Acevedo-Peñaloza, C. (2018). Análisis termodinámico en frenos de disco. Bogota, Colombia: ECOE Ediciones.spa
dcterms.referencesGarcía-León, Ricardo; Perez-Rojas, Eduar (2017). Analysis of the amount of heat flow between cooling channels in three vented brake discs. Ingeniería y Universidad, 21(1), 55–70. https://doi.org/10.11144/Javeriana.iyu21-1.aahfspa
dcterms.referencesGarcía-León, Ricardo; Rivera-López, Jesús; Quintero-Orozco, Abner; Gutiérrez-Paredes, Guadalupe (2019). Análisis del caudal en un disco de freno automotriz con álabes de ventilación tipo NACA 66-209, utilizando velocimetría por imágenes de partículas. Informador Técnico, 83(1), 20-32. https://doi.org/10.23850/22565035.1785spa
dcterms.referencesGorjan, L.; Boretius, M.; Blugan, G.; Gili, F., Mangherini, D.; Lizarralde, X.; Ferrarise, M.; Graulea, T.; Igartua, A.; Mendoza, G.; Kuebler, J. (2016). Ceramic protection plates brazed to aluminum brake discs. Ceramics International, 42(14), 15739-15746. https://doi.org/10.1016/j.ceramint.2016.07.035spa
dcterms.referencesHe, Yan; Ma, Lianxiang; Huang, Suyi (2005). Convection heat and mass transfer from a disk. Heat and mass transfer, 41(8), 766-772. https://doi.org/10.1007/s00231-005-0628-7spa
dcterms.referencesHernández-Mora, Johann; Trujillo-Rodríguez, César; Vallejo-Lozada, William (2014). Modelamiento de la irradiancia y la temperatura ambiente utilizando funciones de probabilidad. Tecnura, 18(39), 128-137. https://doi.org/10.14483/udistrital.jour.tecnura.2014.1.a09spa
dcterms.referencesHirasawa, Shigeki; Kawanami, Tsuyoshi; Shirai, Katsuaki (2014). Numerical analysis of convection heat transfer on high-temperature rotating disk at bottom surface of air flow duct. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol. 8A. https://doi.org/10.1115/IMECE2014-36142spa
dcterms.referencesIlanko, Ashok; Vijayaraghavan, Srinivasan (2017). Wear mechanism of flax/basalt fiber-reinforced eco friendly brake friction materials. Tribology-Materials, Surfaces & Interfaces, 11(1), 47-53. https://doi.org/10.1080/17515831.2017.1299323spa
dcterms.referencesJacobson, R. (2007). Applications of a new model for the abrasive wear resistance of multiphase materials. Compos. Coat. Mater., 174, 1459–1463.spa
dcterms.referencesJamari, Jaenudin; Tauviqirrahman, M. (2017). “Thermal analysis of disc brakes using finite element method. AIP Conference Proceedings 1788, 30028. https://doi.org/10.1063/1.4968281spa
dcterms.referencesKim, Dae-Jin; Lee, Young-Min; Park, Jae-Sil; Seok, Chang-Sung (2008). Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface. Materials Science and Engineering: A, 483, 456-459. https://doi.org/10.1016/j.msea.2007.01.170spa
dcterms.referencesKim, J. K.; Yim, E. S.; Jeon, C. H.; Jung, C. S.; Han, B. H. (2012). Cold performance of various biodiesel fuel blends at low temperature. International journal of automotive technology, 13(2), 293-300. https://doi.org/10.1007/s12239-012-0027-2spa
dcterms.referencesKim, M. R.; Ahn, B. J.; Lee, J. M.; Jung, Y. K. (2007). Numerical investigation of thermal behavior. In brake assembly during the ALPINE braking mode (No. 2007-01-1021). SAE Technical Paper. https://doi.org/10.4271/2007-01-1021spa
dcterms.referencesKlimenda, Frantisek; Soukup, Josef; Kampo, Jan (2016). Heat distribution in disc brake. In AIP Conference Proceedings, vol. 1745. https://doi.org/10.1063/1.4953715spa
dcterms.referencesLaguna-Camacho, J. R.; Juárez-Morales, G.; Calderón-Ramón, C.; Velázquez-Martínez, V.; Hernández-Romero, I.; Mendez-Mendez, J. V.; Vite-Torres, M. (2015). A study of the wear mechanisms of disk and shoe brake pads. Engineering Failure Analysis, 56, 348-359. https://doi.org/10.1016/j.engfailanal.2015.01.004spa
dcterms.referencesLanghof, Nico; Rabenstein, Michael; Rosenlöcher, Jens; Hackenschmidt, Reinhard; Krenkel, Walter; Rieg, Frank (2016). Full-ceramic brake systems for high performance friction applications. Journal of the European Ceramic Society, 36(15), 3823-3832. https://doi.org/10.1016/j.jeurceramsoc.2016.04.040spa
dcterms.referencesManohar-Reddy, S.; Mallikarjuna, J. M.; Ganesan, V. (2006). Flow and Heat Transfer Analysis Through a Brake Disc: A CFD Approach. In ASME 2006 International Mechanical Engineering Congress and Exposition (pp. 481-485). American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2006-14317spa
dcterms.referencesManohar-Reddy, S.; Mallikarjuna, J. M.; Ganesan, V. (2008). Flow and heat transfer analysis of a ventilated disc brake rotor using CFD. SAE Technical Paper. (No. 2008-01-0822). In SAE World Congress & Exhibition. https://doi.org/10.4271/2008-01-0822spa
dcterms.referencesMataix, Claudio (1986). Mecánica de Fluidos y Maquinas Hidraulicas. Segunda Edición, Madrid, España: Ediciones del Castillo S.A.spa
dcterms.referencesMatějka, V., Lu, Y., Matějková, P., Smetana, B., Kukutschová, J., Vaculík, M., Tomášek, V., Zlá, S., Fan, Y. (2011). Possible stibnite transformation at the friction surface of the semi-metallic friction composites designed for car brake linings. Applied surface science, 258(5), 1862-1868. https://doi.org/10.1016/j.apsusc.2011.10.063spa
dcterms.referencesMeng, Dejian; Zhang, Lijun; Yu, Zhuoping (2016). A dynamic model for brake pedal feel analysis in passenger cars. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(7), 955-968. https://doi.org/10.1177/0954407015598030spa
dcterms.referencesMilenković, Predrag; Jovanović, Saša; Janković, Aleksandra; Milovanović, Milan; Vitošević, Nenad; Milan, Djordjević; Raičević, Mile (2010). The influence of brake pads thermal conductivity on passanger car brake system efficiency. Thermal Science, 14, S221-S230. https://doi.org/10.2298/TSCI100505016Mspa
dcterms.referencesPalmer, E.; Mishra, R.; Fieldhouse, J. (2009). An optimization study of a multiple-row pin-vented brake disc to promote brake cooling using computational fluid dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(7), 865-875. https://doi.org/10.1243/09544070JAUTO1053spa
dcterms.referencesPavlov, A. V.; Kudelnikova, S. P.; Vicharev, A. N. (2015). On the corrosion resistance of halfmetallic composite brake pads for railroad cars. Journal of Friction and Wear, 36(2), 123-126. https://doi.org/10.3103/S1068366615020130spa
dcterms.referencesPevec, M.; Potrc, I.; Bombek, G.; Vranesevic, D. (2012). Prediction of the cooling factors of a vehicle brake disc and its influence on the results of a thermal numerical simulation. International Journal of Automotive Technology, 13(5), 725-733. https://doi.org/10.1007/s12239-012-0071-yspa
dcterms.referencesPuhn, Fred (1985). Brake Handbook. USA: HP Books.spa
dcterms.referencesRajagopal, Thundil; Ramachandran, Ramsai; James, Mathew; Gatlewar, Soniya (2014). Numerical investigation of fluid flow and heat transfer characteristics on the aerodynamics of ventilated disc brake rotor using CFD. Thermal Science, 18(2), 667–675. https://doi.org/10.2298/TSCI111219204Rspa
dcterms.referencesRashid, Asim (2014). Overview of disc brakes and related phenomena–a review. International journal of vehicle noise and vibration, 10(4), 257-301. https://doi.org/10.1504/IJVNV.2014.065634spa
dcterms.referencesRomero-Millán, María; Cruz-Domínguez, María; Sierra-Vargas, Fabio Emiro (2016). Efecto de la temperatura en el potencial de aprovechamiento energético de los productos de la pirólisis del cuesco de palma. Tecnura, 20(48), 89-99. http://dx.doi.org/10.14483/udistrital.jour.tecnura.2016.2.a06.spa
dcterms.referencesRuan, Jiageng; Walker, Paul; Watterson, Peter; Zhang, Nong (2016). The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle. Applied energy, 183, 1240-1258. https://doi.org/10.1016/j.apenergy.2016.09.057spa
dcterms.referencesSakamoto, H. (2004). Heat convection and design of brake discs. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218(3), 203-212. https://doi.org/10.1243/0954409042389436spa
dcterms.referencesShaw, S. W. (1986). On the dynamic response of a system with dry friction. Journal of Sound and Vibration, 108(2), 305-325. https://doi.org/10.1016/S0022-460X(86)80058-Xspa
dcterms.referencesShinde, N. B.; Borkar, B. R. (2015). Literature Review on Fem Analysis Of Disc Brake System. International Journal Of Engineering And Computer Science, 4(2), 10554–10558. http://www.ijecs.in/index.php/ijecs/article/view/3422spa
dcterms.referencesSiramdasu, Y.; Taheri, S. (2016). Discrete tyre model application for evaluation of vehicle limit handling performance. Vehicle System Dynamics, 54(11), 1554-1573. https://doi.org/10.1080/00423114.2016.1220594spa
dcterms.referencesSobachkin, A.; Dumnov, G.; Sobachkin, A. (2014). Base numérica de CFD integrada en CAD (Informe Técnico, SolidWorks, 2014). Recovered from http://www.solidworks.es/sw/docs/Flow_Basis_of_CAD_Embedded_CFD_Whitepaper_ESP.pdfspa
dcterms.referencesvspa
dcterms.referencesStewart, Monique; Singh, Som; Andersen, David; Wen, Rou; Booth, Graydon (2016). Wheel temperature reduction during freight car braking. 2016 Joint Rail Conference, Columbia, South Carolina, USA. American Society of Mechanical Engineers. pp. 1–11. https://doi.org/10.1115/JRC2016-5819spa
dcterms.referencesTalati, F.; Jalalifar, S. (2009). Analysis of heat conduction in a disk brake system. Heat and mass transfer, 45(8), 1047-1059. https://doi.org/10.1007/s00231-009-0476-yspa
dcterms.referencesWahlström, J. (2011). A study of airborne wear particles from automotive disc brakes (doctoral dissertation). KTH Royal Institute of Technology.spa
dcterms.referencesWei, Daogao; Ruan, Jingyu; Zhu, Weiwei; Kang, Zuheng (2016). Properties of stability, bifurcation, and chaos of the tangential motion disk brake. Journal of Sound and Vibration, 375, 353-365. https://doi.org/10.1016/j.jsv.2016.04.022spa
dcterms.referencesWei, Wei; Hu, Yang; Wu, Qing; Zhao, Xubao; Zhang, Jun; Zhang, Yuan (2017). An air brake model for longitudinal train dynamics studies. Vehicle System Dynamics, 55(4), 517-533. https://doi.org/10.1080/00423114.2016.1254261spa
dcterms.referencesWu, Shuai; Yi, Maozhong; Ge, Yicheng; Ran, Liping; Peng, Ke (2017). Effect of carbon fiber reinforcement on the tribological performance and behavior of aircraft carbon brake discs. Carbon, 117, 279-292. https://doi.org/10.1016/j.carbon.2017.03.003spa
dcterms.referencesWu, Wei; Xiong, Zhao; Hu, Jibin; Yuan, Shihua (2015). Application of CFD to model oil–air flow in a grooved two-disc system. International Journal of Heat and Mass Transfer, 91, 293-301. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.092spa
dcterms.referencesWurm, Johannes; Fitl, Matthias; Gumpesberger, Michael; Väisänen, Esa; Hochenauer, Christoph (2016). Novel CFD approach for the thermal analysis of a Continuous Variable Transmission (CVT). Applied thermal engineering, 103, 159-169. https://doi.org/10.1016/j.applthermaleng.2016.04.092spa
dc.identifier.doihttps://doi.org/10.23850/22565035.1766
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.83 No.2.(2019)spa
dc.relation.citationendpage208spa
dc.relation.citationissue2(2019)spa
dc.relation.citationstartpage191spa
dc.relation.citationvolume83spa
dc.relation.citesGarcía-León, R., Flórez-Solano, E., & Suárez-Quiñones, Álvaro. (2019). Brake discs: A technological review from its analysis and assessment. Informador Técnico, 83(2), 191–208. https://doi.org/10.23850/22565035.1766
dc.relation.ispartofjournalInformador Técnicospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposaldisc brakeeng
dc.subject.proposalFinite Elements Analysis (FEA)eng
dc.subject.proposalfrictioneng
dc.subject.proposaltemperatureeng
dc.subject.proposalcarseng
dc.subject.proposalfreno de discospa
dc.subject.proposalAnálisis de Elementos Finitos (AEF)spa
dc.subject.proposalfricciónspa
dc.subject.proposaltemperaturaspa
dc.subject.proposalautomóvilesspa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem