Mostrar el registro sencillo del ítem
CFD performance analysis for Darrieus Hydrokinetic Turbine
dc.contributor.author | Rolong Ortiz, Humberto | |
dc.contributor.author | Acevedo Peñaloza, Carlos Humberto | |
dc.contributor.author | Valencia, Guillermo | |
dc.date.accessioned | 2021-12-07T17:22:44Z | |
dc.date.available | 2021-12-07T17:22:44Z | |
dc.date.issued | 2019-04-10 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1720 | |
dc.description.abstract | This work proposes the analysis of the behavior of a Darrieus type hydrokinetic turbine, starting from the mathematical model that allows to delimit the operation system, linking all the variables present in the phenomenon, specifically the fluid properties such as density, velocity, viscosity and Reynolds number. Also considered are the geometric data of the profiles, the rope length, cross-sectional area, angle of attack of the impeller, type of profile used and speed of rotation. The initial domain data, the flow area and the boundary conditions are selected to solve the model and thus obtain the data of the individual behavior of the selected profiles. For this, the lift and drag curves are obtained over a wide range of angles of attack. After characterizing the profile, the behavior of the impeller is simulated, calculating its power coefficient and consequently its performance. | eng |
dc.format.extent | 06 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Journal of Engineering Science and Technology Review | spa |
dc.relation.ispartof | Journal of Engineering Science and Technology Review | |
dc.rights | © 2008 - 2021 JESTR | Website development by Cloudmate Web Services | eng |
dc.source | http://www.jestr.org/index.php?option=com_content&view=article&id=63&Itemid=110 | spa |
dc.title | CFD performance analysis for Darrieus Hydrokinetic Turbine | eng |
dc.type | Artículo de revista | spa |
dcterms.references | J. Laverde, M. Alzate, F. Aldana, y N. Duarte. Cartilla de servicios públicos para las entidades territoriales. Primera edición. Bogotá, Colombia. 2012. | spa |
dcterms.references | H. Sutherland, D. Berg y T. Ashwill, A retrospective of VAWT Technology. Inform technical, Sandia National Laboratories, Albuquerque, U.S.A. 2012. | spa |
dcterms.references | S. Eriksson, H. Bernhoff y M. Leijon, “Evaluation of different turbine concepts for wind power”, Renewable and Sustainable Energy Reviews, vol. 12, no.5, pp. 1419-1434, 2008. | spa |
dcterms.references | V. Santibáñez, “Estudio experimental de las características de una turbina Darrieus para la marea, generación de energía”, Universidad de Nihon. 132(3), pp. 39-45, 2000. | spa |
dcterms.references | I. Paraschivoiu. Wind Turbine Design with Emphasis on Darrieus Concept. 4th ed. Quebec, Canada. pp. 158-170. 2002. | spa |
dcterms.references | A. Mulugeta, A. Somonovic, D. Komarov y S. Stupar, “Numerical and analytical investigation of vertical axis wind turbine”, FME Transactions, Vol. 4, nº 1, pp. 49-58, 2013. | spa |
dcterms.references | B. Montgomerie, “Methods for root effects, tip effects and extending the angle of attack range to +- 180° to +- 180° , with applications to aerodynamics for blades on wind turbines and propellers”, Swedish Defense Research Agency. Suecia. pp. 10-54. 2004. | spa |
dcterms.references | Ansys Inc. “Ansys Best Practices Manual”, Ansys User Guide, vol. 1, 2018. | spa |
dcterms.references | T. Maitre, E. Amet y C. Pellone, Modeling of the flow in a Darrieus water: Wall grid refinement analysis, 1st ed., Paris, Francia. pp. 6- 10, 2012. | spa |
dcterms.references | I. Màlàel. Numerical simulation of vawt flow using Fluent. U.P.B. Sci. Bull. N° 76(1), pp. 109-122 [Online]. Available: https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full6ba_4782 20.pdf | spa |
dcterms.references | Cornell University, FLUENT Learning Modules - SimCafe - Dashboard, [Online]. Available: https://confluence.cornell.edu/display/SIMULATION/FLUENT+Learni ng+Modules | spa |
dcterms.references | S. Lain y C. Osorio, “Simulation and evaluation of straight - bladed Darrieus – type cross flow marine turbine”, Journal of scientific & industrial research, vol. 69, pp. 906-912, 2010. | spa |
dcterms.references | Y. Dai, N. Gardiner, R. Sutton y P. Dyson, “Hydrodynamic analysis models for the design of Darrieus-type vertical-axis marine current turbines”. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, vol. 3, n° 225, pp. 295-307. http://dx.doi.org/10.1177/1475090211400684. | spa |
dc.identifier.doi | http://dx.doi.org/10.25103/jestr.122.06 | |
dc.publisher.place | Grecia | spa |
dc.relation.citationedition | Vol.12 No.2.(2019) | spa |
dc.relation.citationendpage | 45 | spa |
dc.relation.citationissue | 2(2019) | spa |
dc.relation.citationstartpage | 40 | spa |
dc.relation.citationvolume | 12 | spa |
dc.relation.cites | Rolong Ortiz, H., Acevedo Penaloza, C., & Valencia Ochoa, G. (2019). CFD performance analysis for Darrieus Hydrokinetic Turbine. Journal of Engineering Science & Technology Review, 12(2). | |
dc.relation.ispartofjournal | Journal of Engineering Science and Technology Review | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.proposal | Angle of attack | eng |
dc.subject.proposal | drag curve | eng |
dc.subject.proposal | lift curve | eng |
dc.subject.proposal | Darrieus | eng |
dc.subject.proposal | simulation | eng |
dc.subject.proposal | hydrokinetic turbine | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |