Mostrar el registro sencillo del ítem

dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.contributor.authorValencia, Guillermo
dc.contributor.authorDuarte Forero, Jorge
dc.date.accessioned2021-12-07T17:09:52Z
dc.date.available2021-12-07T17:09:52Z
dc.date.issued2019-12
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1718
dc.description.abstractThe quality of the energy transformation processes focuses on improving the energy efficiency of the components used in a thermodynamic cycle with the aim to upgrade the application of the resources needed to produce energy in power generation plants. Due to the great importance of thermal analysis in the kinetic energy transformation of a fluid into electrical energy through combined Rankie cycles applied on industrial processes, this paper proposes an energetic and exergetic analysis of a heat exchanger used as a steam surface condenser with the aim to reduce the fuel consumption used by a steam turbine and to establish parameters that define the performance of the shell and tube heat exchanger using computational tools of thermal analysis. An experimental model has been used to validate the numerical analysis developed in a virtual environment. MATLAB software has been used as a numerical tool to develop the matrix manipulations written in .m code that define the thermal analysis of the equations that describe the behavior of the combined regenerative Rankine cycle power plant. Numerical data generated in the numerical model with MATLAB has been compared with the experimental model of the steam surface condenser. A good agreement has been reached between the CFD analysis and the experimental model of the steam surface condenser.eng
dc.format.extent09 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Review on Modelling and Simulationsspa
dc.relation.ispartofInternational Review on Modelling and Simulations
dc.rights© 2005-2021 Praise Worthy Prizeeng
dc.sourcehttps://www.praiseworthyprize.org/jsm/index.php?journal=iremos&page=article&op=view&path[]=24292spa
dc.titleThermal analysis of the heat exchanger used in a regenerative Brayton cycle under real working conditionseng
dc.typeArtículo de revistaspa
dcterms.referencesRojas, D., Ramos Sandoval, O., Amaya, D., Control of a Furnace and a Heat Exchanger Used in Oil Refining Industry by Using Virtual Environments, (2018) International Review on Modelling and Simulations (IREMOS), 11 (5), pp. 288-296.spa
dcterms.referencesZ. Zhao et al., Exergy analysis of the turbine system in a 1000 MW double reheat ultra-supercritical power plant, Energy, vol. 119, pp. 540–548, 2017.spa
dcterms.referencesBozza, F., Teodosio, L., De Bellis, V., Cacciatore, D., Minarelli, F., Aliperti, A., A Modelling Study to Analyse the Compression Ratio Effects on Combustion and Knock Phenomena in a High-Performance Spark-Ignition GDI Engine, (2018) International Review on Modelling and Simulations (IREMOS), 11 (3), pp. 187-197.spa
dcterms.referencesGhazi, M., Essadiqi, E., Mada, M., Faqir, M., Benabdellah, A., Seawater Desalination Pilot Plant: Optimal Design and Sizing of Solar Driven-Four Effect Evaporators Combined with Heat Integration Analysis, (2017) International Review on Modelling and Simulations (IREMOS), 10 (3), pp. 177-192.spa
dcterms.referencesS. Wang, Z. Liu, R. Cordtz, M. Imran, and Z. Fu, Performance prediction of the combined cycle power plant with inlet air heating under part load conditions, Energy Conversion and Management, vol. 200, p. 112063, 2019.spa
dcterms.referencesX. Li, N. Wang, L. Wang, Y. Yang, and F. Maréchal, Identification of optimal operating strategy of direct air - cooling condenser for Rankie cycle based power plants, Applied Energy, vol. 209, pp. 153–166, 2018.spa
dcterms.referencesG. Valencia, J. Núñez, and J. Duarte, Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines, Entropy, vol. 21, no. 7, 2019.spa
dcterms.referencesA. Ganjehkaviri, M. N. Mohd Jaafar, S. E. Hosseini, and H. Barzegaravval, Genetic algorithm for optimization of energy systems: Solution uniqueness, accuracy, Pareto convergence and dimension reduction, Energy, vol. 119, pp. 167–177, 2017.spa
dcterms.referencesT. Tereshchenko and N. Nord, Energy planning of district heating for future building stock based on renewable energies and increasing supply flexibility, Energy, vol. 112, pp. 1227–1244, 2016.spa
dcterms.referencesH. Li, J. Chen, D. Sheng, and W. Li, The improved distribution method of negentropy and performance evaluation of CCPPs based on the structure theory of thermoeconomics, Applied Thermal Engineering, vol. 96, pp. 64–75, 2016.spa
dcterms.referencesC. Ogbonnaya, A. Turan, and C. Abeykoon, Energy and exergy efficiencies enhancement analysis of integrated photovoltaic-based energy systems, Journal of Energy Storage, vol. 26, p. 101029, 2019.spa
dcterms.referencesL. Pattanayak, B. N. Padhi, and B. Kodamasingh, Thermal performance assessment of steam surface condenser, Case Studies in Thermal Engineering, vol. 14, p. 100484, 2019.spa
dcterms.referencesY. A. Situmorang, Z. Zhao, A. Yoshida, A. Abudula, and G. Guan, Small-scale biomass gasification systems for power generation (<200 kW class): A review, Renewable and Sustainable Energy Reviews, vol. 117, p. 109486, 2020.spa
dcterms.referencesG. Khankari, J. Munda, and S. Karmakar, Power Generation from Condenser Waste Heat in Coal-fired Thermal Power Plant Using Kalina Cycle, Energy Procedia, vol. 90, pp. 613–624, 2016.spa
dcterms.referencesR. Laskowski, Relations for steam power plant condenser performance in off-design conditions in the function of inlet parameters and those relevant in reference conditions, Applied Thermal Engineering, vol. 103, pp. 528–536, 2016.spa
dcterms.referencesA. J. Mahvi, A. S. Rattner, J. Lin, and S. Garimella, Challenges in predicting steam-side pressure drop and heat transfer in air-cooled power plant condensers, Applied Thermal Engineering, vol. 133, pp. 396–406, 2018.spa
dcterms.referencesY. Kong, W. Wang, Z. Zuo, L. Yang, X. Du, and Y. Yang, Combined air-cooled condenser layout with in line configured finned tube bundles to improve cooling performance, Applied Thermal Engineering, vol. 154, pp. 505–518, 2019.spa
dcterms.referencesU. Roy and M. Majumder, Evaluating heat transfer analysis in heat exchanger using NN with IGWO algorithm, Vacuum, vol. 161, pp. 186–193, 2019.spa
dcterms.referencesC. Wantha, Analysis of heat transfer characteristics of tube-in-tube internal heat exchangers for HFO-1234yf and HFC-134a refrigeration systems, Applied Thermal Engineering, p. 113747, 2019.spa
dcterms.referencesV. Medica-Viola, B. Pavković, and V. Mrzljak, Numerical model for on-condition monitoring of condenser in coal-fired power plants, International Journal of Heat and Mass Transfer, vol. 117, pp. 912–923, 2018.spa
dcterms.referencesDuarte Forero, J., Lopez Taborda, L., Bula Silvera, A., Characterization of the Performance of Centrifugal Pumps Powered by a Diesel Engine in Dredging Applications, (2019) International Review of Mechanical Engineering (IREME), 13 (1), pp. 11-20.spa
dcterms.referencesDe la Hoz, J., Valencia, G., Duarte Forero, J., Reynolds Averaged Navier–Stokes Simulations of the Airflow in a Centrifugal Fan Using OpenFOAM, (2019) International Review on Modelling and Simulations (IREMOS), 12 (4), pp. 230-239.spa
dcterms.referencesOrozco, T., Herrera, M., Duarte Forero, J., CFD Study of Heat Exchangers Applied in Brayton Cycles: a Case Study in Supercritical Condition Using Carbon Dioxide as Working Fluid, (2019) International Review on Modelling and Simulations (IREMOS), 12 (2), pp. 72-82.spa
dcterms.referencesJ. Duarte, W. Guillin, and J. Sánchez, Development of a methodology for the prediction of the real volume in the combustion chamber of Diesel engines using finite elements, INGECUC, vol. 14, no. 1, pp. 122–132, 2018.spa
dc.identifier.doihttps://doi.org/10.15866/iremos.v12i6.18324
dc.publisher.placeItaliaspa
dc.relation.citationeditionVol.12 No.6.(2019)spa
dc.relation.citationendpage389spa
dc.relation.citationissue6(2019)spa
dc.relation.citationstartpage381spa
dc.relation.citationvolume12spa
dc.relation.citesAcevedo, C., Valencia, G., Duarte Forero, J., Thermal Analysis of the Heat Exchanger Used in a Regenerative Brayton Cycle Under Real Working Conditions, (2019) International Review on Modelling and Simulations (IREMOS), 12 (6), pp. 381-389. doi:https://doi.org/10.15866/iremos.v12i6.18324
dc.relation.ispartofjournalInternational Review on Modelling and Simulationsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-SinDerivadas 4.0 Internacional (CC BY-ND 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem