Show simple item record

dc.contributor.authorVilla Carrero, Juan Manuel
dc.contributor.authorPuerto Cuadros, Eduard Gilberto
dc.date.accessioned2021-12-07T16:38:54Z
dc.date.available2021-12-07T16:38:54Z
dc.date.issued2020-12-02
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1714
dc.description.abstractThis article conceptualizes a solid regular called GeoMotor capable of moving and directing the sediments of a mountain river and changing its geography. The GeoMotor manages to manipulate the directional growth of sediments in an artificial environment, unveiling emerging architectural structures. For this, an analog simulation of the mountain river flow was performed and provide data to understand the phenomenon. Subsequently, this data was used to train a neural network that recognizes the emerging architectural patterns. As future work, it is planned to improve the models to offer functionalities beyond the orthodox practices of traditional architectonic modelseng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherAdvances in Intelligent Systems and Computingspa
dc.relation.ispartofAdvances in Intelligent Systems and Computing
dc.rights© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021eng
dc.sourcehttps://link.springer.com/chapter/10.1007/978-3-030-63403-2_84spa
dc.titleGeoMotor: Design with nature. Recognition of geometries using a convolutional neural-network approach (CNN)eng
dc.typeArtículo de revistaspa
dcterms.referencesMulder, J., Stive, M.: Zandmotor (Sand Motor): Building with Nature (2020)spa
dcterms.referencesVilla-Carrero, J.M., Orlando-Tarazona, J.: El número, como instrumento de medición y formación de una realidad matérica, abstracta y matemática. Respuestas, 23(S1), 38–41 (2018)spa
dcterms.referencesCely, N., Varón, Y., Fuentes, R.: Implementation of a physical model to determine the hydraulic behavior of mountain rivers. J. Phys: Conf. Ser. 1388, 012041 (2019).spa
dcterms.referencesHamann, H., Divband Soorati, M., Heinrich, M.K., Hofstadler, D., Kuksin, I., Veenstra, F., Wahby, M., Nielsen, S., Riis, S., Skrzypczak, T., Zahadat, P., Wojtaszek, P., Stoy, K., Schmickl, T., Kernbach, S., Ayres, P.: Flora Robótica -- An Architectural System Combining Living Natural Plants and Distributed Robots (2017)spa
dcterms.referencesPuerto, E., Aguilar, J., Vargas, R., Reyes, J.: An Ar2p deep learning architecture for the discovery and the selection of features. Neural Process. Lett. 50(1), 623–643 (2019)spa
dcterms.referencesYao, G., Lei, T., Zhong, J.: A review of Convolutional-Neural-Network-based action recognition. Pattern Recogn. Lett. 118, 14–22 (2019)spa
dc.identifier.doihttps://doi.org/10.1007/978-3-030-63403-2_84
dc.publisher.placeBerlin , Alemaniaspa
dc.relation.citationeditionVol.1296 (2020)spa
dc.relation.citationendpage919spa
dc.relation.citationstartpage916spa
dc.relation.citationvolume1296spa
dc.relation.citesCarrero J.M.V., Cuadros E.G.P. (2021) GeoMotor: Design with Nature. Recognition of Geometries Using a Convolutional Neural-Network Approach (CNN). In: Cheng LY. (eds) ICGG 2020 - Proceedings of the 19th International Conference on Geometry and Graphics. ICGG 2021. Advances in Intelligent Systems and Computing, vol 1296. Springer, Cham. https://doi.org/10.1007/978-3-030-63403-2_84
dc.relation.ispartofjournalAdvances in Intelligent Systems and Computingspa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.subject.proposalGeoMotoreng
dc.subject.proposalCNNeng
dc.subject.proposalGeometryeng
dc.subject.proposalDesigneng
dc.subject.proposalSedimentseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTCORTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record