Mostrar el registro sencillo del ítem

dc.contributor.authorValencia, Guillermo
dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.contributor.authorDuarte Forero, Jorge
dc.date.accessioned2021-12-07T16:24:10Z
dc.date.available2021-12-07T16:24:10Z
dc.date.issued2019-12-06
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1713
dc.description.abstractThis manuscript presents a thermo-economic analysis for a trigeneration system integrated by an absorption refrigeration chiller, a gas microturbine, and the heat recovery steam generation subsystem. The effect of the compressor inlet air temperature on the thermo-economic performance of the trigeneration system was studied and analyzed in detail based on a validated model. Then, we determined the critical operating conditions for which the trigeneration system presents the greatest exergy destruction, producing an increase in the costs associated with loss of exergy, relative costs, and operation and maintenance costs. The results also show that the combustion chamber of the gas microturbine is the component with the greatest exergy destruction (29.24%), followed by the generator of the absorption refrigeration chiller (26.25%). In addition, the compressor inlet air temperature increases from 305.15 K to 315.15 K, causing a decrease in the relative cost difference of the evaporator (21.63%). Likewise, the exergo-economic factor in the heat exchanger and generator presented an increase of 6.53% and 2.84%, respectively.eng
dc.format.extent18 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherEnergiesspa
dc.relation.ispartofEnergies
dc.rights© 1996-2021 MDPI (Basel, Switzerland) unless otherwise statedeng
dc.sourcehttps://www.mdpi.com/1996-1073/12/24/4643spa
dc.titleThermo-economic assessment of a gas microturbine-absorption chiller trigeneration system under different compressor inlet air temperatureseng
dc.typeArtículo de revistaspa
dcterms.referenceshttps://doi.org/10.3390/en12244643spa
dcterms.referencesRamírez, R.; Gutiérrez, A.S.; Eras, J.J.C.; Valencia, K.; Hernández, B.; Forero, J.D. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 2019, 241, 118412.spa
dcterms.referencesValencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC. Appl. Sci. 2019, 9, 4017.spa
dcterms.referencesAl Moussawi, H.; Fardoun, F.; Louahlia-Gualous, H. Review of tri-generation technologies: Design evaluation, optimization, decision-making, and selection approach. Energy Convers. Manag. 2016, 120, 157–196.spa
dcterms.referencesLecompte, S.; Lemmens, S.; Huisseune, H.; Van den Broek, M.; De Paepe, M. Multi-objective thermo-economic optimization strategy for ORCs applied to subcritical and transcritical cycles for waste heat recovery. Energies 2015, 8, 2714–2741.spa
dcterms.referencesAprhornratana, S.; Eames, I. Thermodynamic analysis of absorption refrigeration cycles using the second law of thermodynamics method. Int. J. Refrig. 1995, 18, 244–252.spa
dcterms.referencesFlorides, G.A.; Kalogirou, S.A.; Tassou, S.A.; Wrobel, L.C. Modelling, simulation and warming impact assessment of a domestic-size absorption solar cooling system. Appl. Therm. Eng. 2002, 22, 1313–1325.spa
dcterms.referencesShirmohammadi, R.; Soltanieh, M.; Romeo, L. Thermoeconomic analysis and optimization of post-combustion CO2 recovery unit utilizing absorption refrigeration system for a natural-gas-fired power plant. Environ. Prog. Sustain. Energy 2018, 37, 1075–1084.spa
dcterms.referencesValencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21, 655.spa
dcterms.referencesSzargut, J.; Morris, D.; Stewar, F. Exergy Analysis of Thermal, Chemical and Metallurgical Processes; Hemisphere Publishing: New York, NY, USA, 1988.spa
dcterms.referencesKotas, T. The Exergy Method of Thermal Plant Analysis; Anchor Brendon Ltd.: London, UK, 1985.spa
dcterms.referencesKaynakli, O.; Kilic, M. Theoretical study on the effect of operating conditions on performance of absorption refrigeration system. Energy Convers. Manag. 2007, 48, 599–607.spa
dcterms.referencesMartínez, H.; Rivera, W. Energy and exergy analysis of a double absorption heat transformer operating with water/lithium bromide. Int. J. Energy Res. 2009, 33, 662–674.spa
dcterms.referencesKaushik, S.C.; Arora, A. Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems. Int. J. Refrig. 2009, 32, 1247–1258.spa
dcterms.referencesGomri, R.; Hakimi, R. Second law analysis of double effect vapour absorption cooler system. Energy Convers. Manag. 2008, 49, 3343–3348.spa
dcterms.referencesRosiek, S. Exergy analysis of a solar-assisted air-conditioning system: Case study in southern Spain. Appl. Therm. Eng. 2019, 148, 806–816.spa
dcterms.referencesPourfayaz, F.; Imani, M.; Mehrpooya, M.; Shirmohammadi, R. Process development and exergy analysis of a novel hybrid fuel cell-absorption refrigeration system utilizing nanofluid as the absorbent liquid. Int. J. Refrig. 2019, 97, 31–41.spa
dcterms.referencesAlanne, K.; Saari, A. Sustainable small-scale CHP technologies for buildings: The basis for multi-perspective decision-making. Renew. Sustain. Energy Rev. 2004, 8, 401–431.spa
dcterms.referencesAl-Sulaiman, F.A.; Hamdullahpur, F.; Dincer, I. Trigeneration: A comprehensive review based on prime movers. Int. J. Energy Res. 2011, 35, 233–258.spa
dcterms.referencesMohammadi, S.M.H.; Ameri, M. Energy and exergy analysis of a tri-generation water-cooled air conditioning system. Energy Build. 2013, 67, 453–462.spa
dcterms.referencesFontalvo, A.; Pinzon, H.; Duarte, J.; Bula, A.; Quiroga, A.G.; Padilla, R.V. Exergy analysis of a combined power and cooling cycle. Appl. Therm. Eng. 2013, 60, 164–171.spa
dcterms.referencesDiaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum power from fluid flow by applying the first and second laws of thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903.spa
dcterms.referencesMarimón, M.A.; Arias, J.; Lundqvist, P.; Bruno, J.C.; Coronas, A. Integration of trigeneration in an indirect cascade refrigeration system in supermarkets. Energy Build. 2011, 43, 1427–1434.spa
dcterms.referencesHawkes, A.D.; Leach, M.A. Cost-effective operating strategy for residential micro-combined heat and power. Energy 2007, 32, 711–723.spa
dcterms.referencesValencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine. Energies 2019, 12, 4165.spa
dcterms.referencesBejan, A.; Tsatsaronis, G.; Moran, M. Thermal Design and Optimization; John Wiley & Sons: Hoboken, NJ, USA, 1995; ISBN 0471584673.spa
dcterms.referencesKizilkan, Ö.; Sencan, A.; Kalogirou, S. Thermoeconomic optimization of a LiBr absorption refrigeration system. Chem. Eng. Process. 2007, 46, 1376–1384.spa
dcterms.referencesLian, Z.T.; Chua, K.J.; Chou, S.K. A thermoeconomic analysis of biomass energy for trigeneration. Appl. Energy 2010, 87, 84–95.spa
dcterms.referencesMago, P.J.; Hueffed, A.K. Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies. Energy Build. 2010, 42, 1628–1636spa
dcterms.referencesGhaebi, H.; Karimkashi, S.; Saidi, M.H. Integration of an absorption chiller in a total CHP site for utilizing its cooling production potential based on R-curve concept. Int. J. Refrig. 2012, 35, 1384–1392.spa
dcterms.referencesAhmadi, P.; Rosen, M.A.; Dincer, I. Greenhouse gas emission and exergo-environmental analyses of a trigeneration energy system. Int. J. Greenh. Gas Control 2011, 5, 1540–1549.spa
dcterms.referencesGhaebi, H.; Saidi, M.H.; Ahmadi, P. Exergoeconomic optimization of a trigeneration system for heating, cooling and power production purpose based on TRR method and using evolutionary algorithm. Appl. Therm. Eng. 2012, 36, 113–125.spa
dcterms.referencesArregoces, A.J.; De la Cruz, J.R.; Valencia, G.E. Estudio comparativo del desempeño energético, económico y ambiental de un sistema de trigeneración constituido por una microturbina de 30kW acoplada a una tecnología de calefacción y diferentes tecnologías de refrigeración. Univ. Atl. 2019, 1, 123.spa
dcterms.referencesMoran, M.J.; Saphiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-1-118-10801-7.spa
dcterms.references. Garousi Farshi, L.; Mahmoudi, S.M.S.; Rosen, M.A. Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems. Appl. Energy 2013, 103, 700–711.spa
dcterms.referencesMisra, R.D.; Sahoo, P.K.; Gupta, A. Thermoeconomic optimization of a LiBr/H2O absorption chiller using structural method. J. Energy Resour. Technol. 2005, 127, 119–124.spa
dcterms.referencesBoyaghchi, F.A.; Mahmoodnezhad, M.; Sabeti, V. Exergoeconomic analysis and optimization of a solar driven dual-evaporator vapor compression-absorption cascade refrigeration system using water/CuO nanofluid. J. Clean. Prod. 2016, 139, 970–985.spa
dcterms.referencesBilgen, S.; Kaygusuz, K. Second law (exergy) analysis of cogeneration system. Energy Sources Part A 2008, 30, 1267–1280.spa
dcterms.referencesValencia, G.; Fontalvo, A.; Cárdenas, Y.; Duarte, J.; Isaza, C. Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC. Energies 2019, 12, 2378.spa
dcterms.referencesOchoa, G.V.; Peñaloza, C.A.; Rojas, J.P. Thermoeconomic modelling and parametric study of a simple ORC for the recovery of waste heat in a 2 MW gas engine under different working fluids. Appl. Sci. 2019, 9, 4526.spa
dcterms.referencesValencia, G.; Benavides, A.; Cárdenas, Y. Economic and Environmental Multiobjective Optimization of a Wind–Solar–Fuel Cell Hybrid Energy System in the Colombian Caribbean Region. Energies 2019, 12, 2119.spa
dc.identifier.doihttps://doi.org/10.3390/en12244643
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol.12 No.24.(2019)spa
dc.relation.citationendpage18spa
dc.relation.citationissue24(2019)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume12spa
dc.relation.citesValencia Ochoa, G., Acevedo Peñaloza, C., & Duarte Forero, J. (2019). Thermo-economic assessment of a gas microturbine-absorption chiller trigeneration system under different compressor inlet air temperatures. Energies, 12(24), 4643.
dc.relation.ispartofjournalEnergiesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalthermo-economic assessmenteng
dc.subject.proposaltrigeneration systemeng
dc.subject.proposalgas microturbineeng
dc.subject.proposalabsorption chillereng
dc.subject.proposalexergy analysiseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem