Mostrar el registro sencillo del ítem


Characterization of the heat release rate in the cylinders of a 2MW natural gas generation engine

dc.contributor.authorValencia-Ochoa, Guillermo
dc.contributor.authorDuarte Forero, Jorge
dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.date.accessioned2021-12-04T20:22:57Z
dc.date.available2021-12-04T20:22:57Z
dc.date.issued2020-01-01
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1688
dc.description.abstractDesarrollar modelos matemáticos para los motores de generación de energía más confiables que permitan proponer un uso eficiente de los combustibles y aumentar la eficiencia de conversión energética, se ha convertido en uno de los principales objetivos de los trabajos de investigación en el área. Con el fin de estudiar el fenómeno liberación de calor en los cilindros de un motor a gas natural J612 Jenbacher de 2 MW a partir de variables medias disponibles enregistros operacionales, se ha propuesto un modelo semifísico a partir de balances de masa, energía, ecuaciones constitutivas y regresiones estadísticas. Los resultados muestran que a partir del modelo propuesto del calor rechazado con un coeficiente de determinación de 0.99, el permiten alcanzar un error relativo máximo de 2% en modo isla y del 4% operando en red para la estimación de la temperatura de los gases a las salidas de los cilindros. Así mismo, el modelo permite determinar la fracción de calor perdido en los cilindros en función de la energía aportada por el gas natural.spa
dc.description.abstractThedevelopment of mathematical models for the most reliable power generation engines to propose an efficient use of fuels and increase energy conversion efficiency has become one of the main objectives of research work in the area. In order to study the heatrelease phenomenon in the cylinders of a 2 MW J612 Jenbacher natural gas engine from mean variables available in operational records,a semiphysical model has been proposed from mass balances, energy, constitutive equations and statistical regressions. The results show that from the proposed model of heat rejected with a determination coefficient of 0.99, the allow to reach a maximum relative error of 2% in island mode and 4% operating in network for the estimation of the temperature of the gases at the exit of the cylinders. Likewise, the model allows to determine the fraction of heat lost in the cylinders according to the energy provided by the natural gas.eng
dc.format.extent07 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAiBi Revista de Investigación, Administración e Ingenieríaspa
dc.relation.ispartofAiBi Revista de Investigación, Administración e Ingeniería
dc.rights© 2018 Universidad de Santander UDES Campus Universitario Lagos del Caciqueeng
dc.sourcehttps://revistas.udes.edu.co/aibi/article/view/1637spa
dc.titleCaracterización de la tasa de liberación de calor en los cilindros de un motor de generación a gas natural de 2 MWspa
dc.titleCharacterization of the heat release rate in the cylinders of a 2MW natural gas generation engineeng
dc.typeArtículo de revistaspa
dcterms.referencesS. Broekaert, J. Demuynck, T. De Cuyper, M. De Paepe, and S. Verhelst, “Heat transfer in premixed spark ignition engines part I : Identi fi cation of the factors in fl uencing heat transfer,” Energy, vol. 116, pp. 380–391, 2016.spa
dcterms.referencesB. Deng, J. Fu, D. Zhang, J. Yang, R. Feng, and J. Liu, “The heat release analysis of bio-butanol / gasoline blends on a high speed SI (spark ignition) engine,” vol. 60, pp. 230–241, 2013.spa
dcterms.referencesS. Backlund, P. Thollander, J. Palm, and M. Ottosson, “Extending the energy efficiency gap,” Energy Policy, vol. 51, pp. 392–396, 2012.spa
dcterms.referencesD. R. Johnson, R. Heltzel, A. C. Nix, N. Clark, and M. Darzi, “Greenhouse gas emissions and fuel e ffi ciency of in-use high horsepower diesel, dual fuel , and natural gas engines for unconventional well development,” Appl. Energy, vol. 206, no. September, pp. 739–750, 2017.spa
dcterms.referencesS. Jain, S. Kalambe, G. Agnihotri, and A. Mishra, “Distributed generation deployment : State-of-the-art of distribution system planning in sustainable era,” Renew. Sustain. Energy Rev., vol. 77, no. February, pp. 363–385, 2017.spa
dcterms.referencesT. Ackermann, “Distributed generation : a definition,” vol. 57, pp. 195–204, 2001.spa
dcterms.referencesA. Amell, D. B. Olsen, and G. J. A. Diaz, “Strategies to improve the performance of a spark ignition engine using fuel blends of biogas with natural gas , propane and hydrogen,” pp. 1–11, 2018.spa
dcterms.references“BP Statical Review of World Energy,” vol. 67, p. 56, 2018.spa
dcterms.referencesG. Borman and K. Nishiwaki, “Internal-combustion engine heat transfer,” Prog. Energy Combust. Sci., vol. 13, no. 1, pp. 1–46, 1987.spa
dcterms.referencesG. M. Kosmadakis, E. G. Pariotis, and C. D. Rakopoulos, “Heat transfer and crevice flow in a hydrogen- fueled spark-ignition engine : Effect on the engine performance and NO exhaust emissions,” Int. J. Hydrogen Energy, vol. 38, no. 18, pp. 7477–7489, 2013.spa
dcterms.referencesC. Hong, N. Jimin, Y. Nianye, and S. Xiuyong, “Study on the Platform of Engine Product Development,” vol. 16, pp. 211–217, 2011.spa
dcterms.referencesT. Shudo and H. Suzuki, “Applicability of heat transfer equations to hydrogen combustion,” JSAE Rev., vol. 23, no. 3, pp. 303–308, 2002.spa
dcterms.referencesW. Nußelt, “Der Wärmeübergang in der Verbrennungskraftmaschine. VDI-Forsch.” Heft, 1923.spa
dcterms.referencesV. K. Elser, “Forschung,” no. I, 1955.spa
dcterms.referencesT. and F. M. Group and W. J. D. Annand, “Heat transfer in the cylinders of reciprocating internal combustion engines,” Proc. Inst. Mech. Eng., vol. 177, no. 1, pp. 973–996, 1963.spa
dcterms.referencesG. Woschni, “A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine,” SAE Technical paper, 1967.spa
dcterms.referencesG. Woschni, “Die Berechnung der Wandverluste und der thermischen Belastung der Bauteile von Dieselmotoren,” MTZ, vol. 31, p. S-491, 1970.spa
dcterms.referencesJ. A. Gatowski, E. N. Balles, K. M. Chun, F. E. Nelson, J. A. Ekchian, and J. B. Heywood, “Heat release analysis of engine pressure data,” SAE Technical paper, 1984.spa
dcterms.referencesG. F. Hohenberg, “Advanced approaches for heat transfer calculations,” SAE Technical paper, 1979.spa
dcterms.referencesS. Broekaert, T. De Cuyper, M. De Paepe, and S. Verhelst, “Experimental investigation of the effect of engine settings on the wall heat fl ux during HCCI combustion,” Energy, vol. 116, pp. 1077–1086, 2016.spa
dcterms.referencesT. De Cuyper, S. Broekaert, K. Chana, M. De Paepe, and S. Verhelst, “Evaluation of empirical heat transfer models using TFG heat flux sensors,” Appl. Therm. Eng., vol. 118, pp. 561–569, 2017.spa
dcterms.referencesJ. Demuynck, M. De Paepe, H. Huisseune, R. Sierens, J. Vancoillie, and S. Verhelst, “On the applicability of empirical heat transfer models for hydrogen combustion engines,” Int. J. Hydrogen Energy, vol. 36, no. 1, pp. 975–984, 2010.spa
dcterms.referencesT. De Cuyper, J. Demuynck, S. Broekaert, M. De Paepe, and S. Verhelst, “Heat transfer in premixed spark ignition engines part II : Systematic analysis of the heat transfer phenomena,” Energy, vol. 116, pp. 851–860, 2016.spa
dcterms.referencesH. Hassan, “Unsteady heat transfer in a motored IC engine cylinder,” Proc. Inst. Mech. Eng., vol. 185, no. 1, pp. 1139–1148, 1970.spa
dcterms.referencesD. J. O. Nijeweme, J. B. W. Kok, C. R. Stone, and L. Wyszynski, “Unsteady in-cylinder heat transfer in a spark ignition engine: experiments and modelling,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 215, no. 6, pp. 747–760, 2001.spa
dcterms.referencesJ. Martín, “Aportación al diagnóstico de la combustión en motores Diesel de inyección directa,” Editor. Univ. Politécnica Val. Val. Spain, 2007.spa
dcterms.referencesO. A. Vergel and F. P. González, Diagnóstico experimental del proceso de combustión en motores Diesel de inyección directa. Universidad Politécnica de Valencia, 1998.spa
dcterms.referencesM. Lapuerta, O. Armas, and J. J. Herna, “Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas,” vol. c, pp. 513–529, 1999.spa
dcterms.referencesP. Schihl, J. Tasdemir, E. Schwarz, and W. Bryzik, “Development of a zero-dimensional heat release model for application to small bore Diesel engines,” SAE Technical Paper, 2002.spa
dcterms.referencesC. D. Rakopoulos, “Validation and sensitivity analysis of a two zone Diesel engine model for combustion and emissions prediction,” vol. 45, pp. 1471–1495, 2004.spa
dcterms.referencesJ. Ghojel and D. Honnery, “Heat release model for the combustion of diesel oil emulsions in DI diesel engines,” vol. 25, pp. 2072–2085, 2005.spa
dcterms.referencesF. Payri, P. Olmeda, J. Martín, and A. García, “A complete 0D thermodynamic predictive model for direct injection diesel engines,” Appl. Energy, vol. 88, no. 12, pp. 4632–4641, 2011.spa
dcterms.referencesM. Baratta, A. E. Catania, A. Ferrari, R. Finesso, and E. Spessa, “Premixed-diffusive multizone model for combustion diagnostics in conventional and PCCI diesel engines,” J. Eng. Gas Turbines Power, vol. 133, no. 10, p. 102801, 2011.spa
dcterms.referencesJ. Karlsson and J. Fredriksson, “Cylinder-by-cylinder engine models vs mean value engine models for use in powertrain control applications,” SAE Technical Paper, 1999.spa
dcterms.referencesL. Guzzella and C. Onder, Introduction to modeling and control of internal combustion engine systems. Springer Science & Business Media, 2009.spa
dcterms.referencesN. Xiros, Robust control of diesel ship propulsion. Springer Science & Business Media, 2012.spa
dcterms.referencesE. Hendricks and S. C. Sorenson, “Mean Value Modelling of Spark Ignition Engines,” SAE Trans., vol. 99, pp. 1359–1373, 1990.spa
dcterms.referencesE. Hendricks and S. C. Sorenson, “SI engine controls and mean value engine modelling,” SAE Technical paper, 1991.spa
dcterms.referencesM. Müller, E. Hendricks, and S. C. Sorenson, “Mean value modelling of turbocharged spark ignition engines,” SAE Technical Paper, 1998.spa
dcterms.referencesM. Fons, M. Muller, A. Chevalier, C. Vigild, E. Hendricks, and S. C. Sorenson, “Mean value engine modelling of an SI engine with EGR,” SAE technical paper, 1999.spa
dcterms.referencesS. B. Choi and J. K. Hedrick, “An observer-based controller design method for improving air/fuel characteristics of spark ignition engines,” IEEE Trans. Control Syst. Technol., vol. 6, no. 3, pp. 325–334, 1998.spa
dcterms.referencesP. Moraal and I. Kolmanovsky, “Turbocharger modeling for automotive control applications,” SAE Technical Paper, 1999.spa
dcterms.referencesA. Chevalier, M. Müller, and E. Hendricks, “On the validity of mean value engine models during transient operation,” SAE Trans., pp. 1571–1592, 2000.spa
dcterms.referencesA. Chevalier, C. W. Vigild, and E. Hendricks, “Predicting the port air mass flow of SI engines in air/fuel ratio control applications,” SAE Trans., pp. 183–210, 2000.spa
dcterms.referencesL. Eriksson, “Modeling and control of turbocharged SI and DI engines,” Oil Gas Sci. Technol. l’IFP, vol. 62, no. 4, pp. 523–538, 2007.spa
dcterms.referencesX. Jiao and T. Shen, “Lyapunov-design of adaptive air-fuel ratio control for gasoline engines based on mean-value model,” in Control Conference (CCC), 2011 30th Chinese, 2011, pp. 6146–6150.spa
dcterms.referencesG. Theotokatos, “On the cycle mean value modelling of a large two-stroke marine diesel engine,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 224, no. 3, pp. 193–205, 2010.spa
dcterms.referencesG. Theotokatos, C. Guan, H. Chen, and I. Lazakis, “Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings,” Energy, vol. 143, pp. 533–545, 2018.spa
dcterms.referencesK. Nikzadfar and A. H. Shamekhi, “An extended mean value model ( EMVM ) for control-oriented modeling of diesel engines transient performance and emissions,” FUEL, vol. 154, pp. 275–292, 2015.spa
dcterms.referencesF. Maroteaux and C. Saad, “Combined mean value engine model and crank angle resolved in- cylinder modeling with NOx emissions model for real-time Diesel engine simulations at high engine speed,” Energy, vol. 88, pp. 515–527, 2015.spa
dcterms.referencesF. Baldi, G. Theotokatos, and K. Andersson, “Development of a combined mean value – zero dimensional model and application for a large marine four-stroke Diesel engine simulation,” Appl. Energy, vol. 154, pp. 402–415, 2015.spa
dcterms.referencesP. J. M. Schulten and D. Stapersma, “Mean value modelling of the gas exchange of a 4-stroke diesel engine for use in powertrain applications,” SAE Technical Paper, 2003.spa
dcterms.referencesA. Shamekhi and A. H. Shamekhi, “Expert Systems with Applications A new approach in improvement of mean value models for spark ignition engines using neural networks,” Expert Syst. Appl., vol. 42, no. 12, pp. 5192–5218, 2015.spa
dcterms.referencesC. Sui, E. Song, D. Stapersma, and Y. Ding, “Mean value modelling of diesel engine combustion based on parameterized finite stage cylinder process,” Ocean Eng., vol. 136, no. 145, pp. 218–232, 2017.spa
dcterms.referencesB. A. P. Campos, L. T. Lucio, R. Reginatto, F. S. Marques, J. C. C. Zank, and T. J. L. de Franca, “Biogas fueled internal combustion engine Mean Value Model for distributed generation,” in 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), 2018, pp. 1–6.spa
dcterms.referencesZ. Han and R. D. Reitz, “A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling,” Int. J. Heat Mass Transf., vol. 40, 1997.spa
dcterms.referencesA. Jafari and S. K. Hannani, “Effect of fuel and engine operational characteristics on the heat loss from combustion chamber surfaces of SI engines B,” vol. 33, pp. 122–134, 2006.spa
dcterms.referencesS. Šarić and B. Basara, “A hybrid wall heat transfer model for IC engine simulations,” SAE Int. J. engines, vol. 8, no. 2, pp. 411–418, 2015.spa
dcterms.referencesS. Šarić, B. Basara, and Z. Žuni, “International Journal of Heat and Fluid Flow Advanced near-wall modeling for engine heat transfer,” vol. 63, pp. 205–211, 2017.spa
dcterms.referencesO. Armas, “Diagnóstico experimental del proceso de combustión en motores Diesel de inyección directa,” Universidad Politécnica de Valencia, 1998.spa
dc.identifier.doihttps://doi.org/10.15649/2346030X.581
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.8 No.1.(2020)spa
dc.relation.citationendpage11spa
dc.relation.citationissue1(2020)spa
dc.relation.citationstartpage5spa
dc.relation.citationvolume8spa
dc.relation.citesValencia-Ochoa, G., Duarte-Forero, J., & Acevedo-Peñaloza, C. (2020). Caracterización de la tasa de liberación de calor en los cilindros de un motor de generación a gas natural de 2 MW. Aibi Revista De investigación, administración E ingeniería, 8(1), 5-11. https://doi.org/10.15649/2346030X.581
dc.relation.ispartofjournalAiBi Revista de Investigación, Administración e Ingenieríaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-SinDerivadas 4.0 Internacional (CC BY-ND 4.0)spa
dc.subject.proposaltasa de liberación de calorspa
dc.subject.proposalmotor de generaciónspa
dc.subject.proposalgas naturalspa
dc.subject.proposalcámara de combustiónspa
dc.subject.proposalmodelizado de valor mediospa
dc.subject.proposalHeat release rateeng
dc.subject.proposalgeneration engineeng
dc.subject.proposalnatural gaseng
dc.subject.proposalcombustion chambereng
dc.subject.proposalaverage value modelingeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem