Mostrar el registro sencillo del ítem
Desarrollo de una metodología para la predicción de curvas características en bombas periféricas
Development of methodology for characteristic curves prediction in regenerative pumps
dc.contributor.author | Valencia-Ochoa, Guillermo | |
dc.contributor.author | Acevedo Peñaloza, Carlos Humberto | |
dc.contributor.author | Duarte Forero, Jorge | |
dc.date.accessioned | 2021-12-04T19:54:28Z | |
dc.date.available | 2021-12-04T19:54:28Z | |
dc.date.issued | 2020-05-01 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1686 | |
dc.description.abstract | Las bombas rotodinámicas han presentado un desarrollo muy notable en los últimos años; debido a esto, su implementación se ha diversificado ampliamente en aplicaciones industriales y domiciliarias. La modificación de los parámetros de operación que definen las características de la bomba regenerativa afecta directamente su eficiencia. Por otro lado, las curvas características que determinan el comportamiento hidráulico de una bomba son utilizadas para definir el punto de operación y escoger una bomba adecuada para las condiciones de funcionamiento de un sistema hidráulico. En este artículo, se presenta una metodología para ajustar la curva teórica de una bomba rotodinámica periférica utilizando factores que influyen en su desempeño considerando que limitaciones físicas que se presentan durante su operación afectan la precisión en la descripción del fenómeno. La ecuación de Euler es utilizada para determinar un conjunto de correlaciones que describen el comportamiento real de la bomba periférica tomando en cuenta la velocidad absoluta del alabe y la componente periférica de la velocidad del fluido que interactúa con el rodete; luego, los datos generados son utilizados para comparar la ecuación de la velocidad del flujo definida con la caracterización geométrica de una bomba regenerativa disponible en el mercado. Por último, se desarrolló una modificación en la ecuación teórica de Euler para predecir la curva real de la bomba regenerativa alcanzando un porcentaje de error menor al 5%. | spa |
dc.description.abstract | Rotodynamic pumps have presented a very significant development in recent years. Therefore, its implementation has been widely diversified in industrial and home applications. The modification of working parameters defines regenerative pump features and directly affects its energy efficiency. On the other hand, characteristic curves determine the hydraulic behavior of a regenerative pump, and they are also used to define the optimal operation point and select an adequate pump depending on the working conditions of a hydraulic system. In this paper, a methodology is presented to adjust the theoretical curve of the regenerative rotodynamic pump using factors that influence in its development; physical limitations presented during the operation pump are considered due to they affect the accuracy of the model description. Euler equation is used to determine a set of correlations that describe the real behavior of the regenerative pump taking into account the blade absolute velocity and the peripheral component of the flow velocity which interact with the impeller; then, generated data are used to compare the flow velocity equation defined with the geometric characterization of regenerative pump available in the market. Lastly, a modification in the Euler theoretical equation was developed to predict the real curve of the regenerative pump, an agreement less than 5 percent was reached. | eng |
dc.format.extent | 08 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | AiBi Revista de Investigación, Administración e Ingeniería | spa |
dc.relation.ispartof | AiBi Revista de Investigación, Administración e Ingeniería | |
dc.rights | © 2018 Universidad de Santander UDES Campus Universitario Lagos del Cacique | eng |
dc.source | https://revistas.udes.edu.co/aibi/article/view/1623 | spa |
dc.title | Desarrollo de una metodología para la predicción de curvas características en bombas periféricas | spa |
dc.title | Development of methodology for characteristic curves prediction in regenerative pumps | eng |
dc.type | Artículo de revista | spa |
dcterms.references | F. Posso, J. C. Acevedo Paez, and J. Hernández, “El impacto económico de las energías renovables,” Aibi Rev. Investig. Adm. e Ing., pp. 22–26, Jul. 2014. | spa |
dcterms.references | G. Silva-Monsalve, “Ciencia, tecnología e innovación: un análisis filosófico y psicológico desde lo abstracto hacia lo fáctico,” Aibi Rev. Investig. Adm. e Ing., pp. 2–7, Jan. 2019. | spa |
dcterms.references | J. D. Smith, V. Sreedharan, M. Landon, and Z. P. Smith, “Advanced design optimization of combustion equipment for biomass combustion,” Renew. Energy, vol. 145, pp. 1597–1607, 2020. | spa |
dcterms.references | T. K. Ibrahim and M. M. Rahman, “Optimum Performance Improvements of the Combined Cycle Based on an Intercooler–Reheated Gas Turbine,” J. Energy Resour. Technol., vol. 137, no. 6, 2015. | spa |
dcterms.references | G. Khankari, J. Munda, and S. Karmakar, “Power Generation from Condenser Waste Heat in Coal-fired Thermal Power Plant Using Kalina Cycle,” Energy Procedia, vol. 90, no. December 2015, pp. 613–624, 2016. | spa |
dcterms.references | C. Liu, W. Bu, and D. Xu, “Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm,” Int. J. Heat Mass Transf., 2017. | spa |
dcterms.references | J. Wen, Y. Li, A. Zhou, and K. Zhang, “An experimental and numerical investigation of flow patterns in the entrance of plate-fin heat exchanger,” Int. J. Heat Mass Transf., vol. 49, no. 9–10, pp. 1667–1678, May 2006. | spa |
dcterms.references | A. Bengoechea, R. Antón, G. S. Larraona, A. Rivas, J. C. Ramos, and Y. Masip, “PIV measurements and a CFD benchmark study of a screen under fan-induced swirl conditions,” Int. J. Heat Fluid Flow, vol. 46, pp. 43–60, 2014. | spa |
dcterms.references | Z. Zhang, LDA application methods: laser Doppler anemometry for fluid dynamics, no. 1. Switzerland: Springer Heidelberg, 2010. | spa |
dcterms.references | M. Yari, “Exergetic analysis of various types of geothermal power plants,” Renew. Energy, vol. 35, no. 1, pp. 112–121, 2010. | spa |
dcterms.references | C. N. Jayapragasan and K. J. Reddy, “Design optimization and experimental study on the blower for fluffs collection system,” J. Eng. Sci. Technol., vol. 12, no. 5, pp. 1318–1336, 2017. | spa |
dcterms.references | M. Cudina, “Detection of cavitation phenomenon in a centrifugal pump using audible sound,” Mech. Syst. Signal Process., vol. 17, no. 6, pp. 1335–1347, 2003. | spa |
dcterms.references | E. C. Bacharoudis, A. E. Filios, M. D. Mentzos, and D. P. Margaris, “Parametric study of a centrifugal pump impeller by varying the outlet blade angle,” Open Mech. Eng. J., vol. 2, no. 5, pp. 75–83, 2008. | spa |
dcterms.references | X. Qiu, D. Japikse, J. Zhao, and M. R. Anderson, “Analysis and Validation of a Unified Slip Factor Model for Impellers at Design and Off-Design Conditions,” J. Turbomach., vol. 133, no. 4, 2011. | spa |
dcterms.references | M. Badami and M. Mura, “Theoretical model with experimental validation of a regenerative blower for hydrogen recirculation in a PEM fuel cell system,” Energy Convers. Manag., vol. 51, no. 3, pp. 553–560, Mar. 2010. | spa |
dcterms.references | M. W. Heo, T. W. Seo, H. S. Shim, and K. Y. Kim, “Optimization of a regenerative blower to enhance aerodynamic and aeroacoustic performance,” J. Mech. Sci. Technol., vol. 30, no. 3, pp. 1197–1208, Mar. 2016. | spa |
dcterms.references | S. Y. Jeon, C. K. Kim, S. M. Lee, J. Y. Yoon, and C. M. Jang, “Performance enhancement of a pump impeller using optimal design method,” J. Therm. Sci., vol. 26, no. 2, pp. 119–124, Apr. 2017. | spa |
dcterms.references | MEPCO, “Marshall Engineered Products.” [Online]. Available: http://www.mepcollc.com/pdf/products/Regenerative_Turbine_Pumps_1484.pdf. [Accessed: 06-Jan-2016]. | spa |
dcterms.references | C. Mataix, Mecánica de Fluidos y Máquinas Hidráulicas, Edición: 2. México: Marcombo, 2004. | spa |
dcterms.references | F. Zhang, K. Chen, D. Appiah, B. Hu, S. Yuan, and S. N. Asomani, “Numerical Delineation of 3D Unsteady Flow Fields in Side Channel Pumps for Engineering Processes,” Energies, vol. 12, no. 7, p. 1287, Apr. 2019. | spa |
dcterms.references | F. Zhang, D. Appiah, J. Zhang, S. Yuan, M. K. Osman, and K. Chen, “Transient flow characterization in energy conversion of a side channel pump under different blade suction angles,” Energy, vol. 161, pp. 635–648, Oct. 2018. | spa |
dcterms.references | T. Meakhail and S. Park, “An improved theory for regenerative pump performance,” Proc. Inst. Mech. Eng. Part A-journal Power Energy - PROC INST MECH ENG A-J POWER, vol. 219, pp. 213–222, 2005. | spa |
dcterms.references | T. Capurso, L. Bergamini, and M. Torresi, “Design and CFD performance analysis of a novel impeller for double suction centrifugal pumps,” Nucl. Eng. Des., vol. 341, no. 2019, pp. 155–166, 2019. | spa |
dcterms.references | A. M. Sl and D. J. M. Issac, “Design and analysis of centrifugal pump impeller using ansys fluent,” vol. 4, no. 10, p. 4, 2015. | spa |
dcterms.references | I. Hernandez-Carrillo, C. J. Wood, and H. Liu, “Advanced materials for the impeller in an ORC radial microturbine,” Energy Procedia, vol. 129, pp. 1047–1054, 2017. | spa |
dcterms.references | W. P. Adamczyk et al., “Application of LES-CFD for predicting pulverized-coal working conditions after installation of NOx control system,” Energy, vol. 160, pp. 693–709, 2018. | spa |
dcterms.references | Y. Sun, W. Liu, and T. yu Li, “Numerical investigation on noise reduction mechanism of serrated trailing edge installed on a pump-jet duct,” Ocean Eng., vol. 191, Nov. 2019. | spa |
dcterms.references | T. Capurso et al., “Numerical investigation of cavitation on a NACA0015 hydrofoil by means of OpenFOAM,” Energy Procedia, vol. 126, pp. 794–801, 2017. | spa |
dcterms.references | T. A. Meakhail, “Numerical study of unsteady flow characteristics in regenerative pump,” 2007. | spa |
dcterms.references | M. A. Mohammadi and A. Jafarian, “CFD simulation to investigate hydrodynamics of oscillating flow in a beta-type Stirling engine,” Energy, vol. 153, pp. 287–300, Jun. 2018. | spa |
dcterms.references | J. Yao, W. Jin, and Y. Song, “RANS simulation of the flow around a tanker in forced motion,” Ocean Eng., vol. 127, no. October, pp. 236–245, 2016. | spa |
dcterms.references | M. García Pérez and E. Vakkilainen, “A comparison of turbulence models and two and three dimensional meshes for unsteady CFD ash deposition tools,” Fuel, vol. 237, no. September 2018, pp. 806–811, 2019. | spa |
dcterms.references | B. Olcucuoglu and B. H. Saracoglu, “A preliminary heat transfer analysis of pulse detonation engines,” in Transportation Research Procedia, 2018, vol. 29, pp. 279–288. | spa |
dcterms.references | F. Quail, M. Stickland, and S. Thomas, “Rapid Manufacturing Technique used in the Development of a Regenerative Pump Impeller,” Lect. Notes Eng. Comput. Sci., vol. 16, 2009. | spa |
dcterms.references | J. Vencels, P. Råback, and V. Geža, “EOF-Library: Open-source Elmer FEM and OpenFOAM coupler for electromagnetics and fluid dynamics,” SoftwareX, vol. 9, pp. 68–72, 2019. | spa |
dcterms.references | A. M. González, M. Vaz, and P. S. B. Zdanski, “A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers,” Appl. Therm. Eng., vol. 148, pp. 363–370, Feb. 2019. | spa |
dcterms.references | S.-H. Kang and S.-H. Ryu, “Reynolds Number Effects on the Performance Characteristic of a Small Regenerative Pump,” J. Fluids Eng. Asme - J FLUID ENG, vol. 131, 2009. | spa |
dcterms.references | W. Lyu and O. el Moctar, “Numerical and experimental investigations of wave-induced second order hydrodynamic loads,” Ocean Eng., vol. 131, no. May 2016, pp. 197–212, 2017. | spa |
dcterms.references | V. Bone, R. McNaughton, M. Kearney, and I. Jahn, “Methodology to develop off-design models of heat exchangers with non-ideal fluids,” Appl. Therm. Eng., vol. 145, pp. 716–734, Dec. 2018. | spa |
dcterms.references | F. J. Quail, T. Scanlon, and A. Baumgartner, “Design study of a regenerative pump using one-dimensional and three-dimensional numerical techniques,” Eur. J. Mech. B/Fluids, vol. 31, no. 1, pp. 181–187, Jan. 2012 | spa |
dcterms.references | Roth Pump Company, “ROTH PUMP COMPANY.” [Online]. Available: http://www.rothpump.com/index.html. [Accessed: 01-Feb-2016]. | spa |
dcterms.references | K. Vasudeva Karanth and N. Y. Sharma, CFD Analysis of a Regenerative Pump for Performance Enhancement. 2014. | spa |
dcterms.references | N. D. Karlsen-Davies and G. A. Aggidis, “Regenerative liquid ring pumps review and advances on design and performance,” Applied Energy, vol. 164. Elsevier Ltd, pp. | spa |
dc.identifier.doi | https://doi.org/10.15649/2346030X.756 | |
dc.publisher.place | Colombia | spa |
dc.relation.citationedition | Vol.8 No.2.(2020) | spa |
dc.relation.citationendpage | 61 | spa |
dc.relation.citationissue | 2(2020) | spa |
dc.relation.citationstartpage | 54 | spa |
dc.relation.citationvolume | 8 | spa |
dc.relation.cites | Valencia-Ochoa, G., Acevedo-Peñaloza, C., & Duarte-Forero, J. (2020). Desarrollo de una metodología para la predicción de curvas características en bombas periféricas. Aibi Revista De investigación, administración E ingeniería, 8(2), 54-61. https://doi.org/10.15649/2346030X.756 | |
dc.relation.ispartofjournal | AiBi Revista de Investigación, Administración e Ingeniería | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-SinDerivadas 4.0 Internacional (CC BY-ND 4.0) | spa |
dc.subject.proposal | Balance energético | spa |
dc.subject.proposal | Bomba | spa |
dc.subject.proposal | Dinámica de fluidos | spa |
dc.subject.proposal | Metodología | spa |
dc.subject.proposal | Modelo | spa |
dc.subject.proposal | Energy balance | eng |
dc.subject.proposal | Fluid dynamics | eng |
dc.subject.proposal | Methodology | eng |
dc.subject.proposal | Model | eng |
dc.subject.proposal | Pump | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |