Mostrar el registro sencillo del ítem


Development of methodology for characteristic curves prediction in regenerative pumps

dc.contributor.authorValencia-Ochoa, Guillermo
dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.contributor.authorDuarte Forero, Jorge
dc.date.accessioned2021-12-04T19:54:28Z
dc.date.available2021-12-04T19:54:28Z
dc.date.issued2020-05-01
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1686
dc.description.abstractLas bombas rotodinámicas han presentado un desarrollo muy notable en los últimos años; debido a esto, su implementación se ha diversificado ampliamente en aplicaciones industriales y domiciliarias. La modificación de los parámetros de operación que definen las características de la bomba regenerativa afecta directamente su eficiencia. Por otro lado, las curvas características que determinan el comportamiento hidráulico de una bomba son utilizadas para definir el punto de operación y escoger una bomba adecuada para las condiciones de funcionamiento de un sistema hidráulico. En este artículo, se presenta una metodología para ajustar la curva teórica de una bomba rotodinámica periférica utilizando factores que influyen en su desempeño considerando que limitaciones físicas que se presentan durante su operación afectan la precisión en la descripción del fenómeno. La ecuación de Euler es utilizada para determinar un conjunto de correlaciones que describen el comportamiento real de la bomba periférica tomando en cuenta la velocidad absoluta del alabe y la componente periférica de la velocidad del fluido que interactúa con el rodete; luego, los datos generados son utilizados para comparar la ecuación de la velocidad del flujo definida con la caracterización geométrica de una bomba regenerativa disponible en el mercado. Por último, se desarrolló una modificación en la ecuación teórica de Euler para predecir la curva real de la bomba regenerativa alcanzando un porcentaje de error menor al 5%.spa
dc.description.abstractRotodynamic pumps have presented a very significant development in recent years. Therefore, its implementation has been widely diversified in industrial and home applications. The modification of working parameters defines regenerative pump features and directly affects its energy efficiency. On the other hand, characteristic curves determine the hydraulic behavior of a regenerative pump, and they are also used to define the optimal operation point and select an adequate pump depending on the working conditions of a hydraulic system. In this paper, a methodology is presented to adjust the theoretical curve of the regenerative rotodynamic pump using factors that influence in its development; physical limitations presented during the operation pump are considered due to they affect the accuracy of the model description. Euler equation is used to determine a set of correlations that describe the real behavior of the regenerative pump taking into account the blade absolute velocity and the peripheral component of the flow velocity which interact with the impeller; then, generated data are used to compare the flow velocity equation defined with the geometric characterization of regenerative pump available in the market. Lastly, a modification in the Euler theoretical equation was developed to predict the real curve of the regenerative pump, an agreement less than 5 percent was reached.eng
dc.format.extent08 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAiBi Revista de Investigación, Administración e Ingenieríaspa
dc.relation.ispartofAiBi Revista de Investigación, Administración e Ingeniería
dc.rights© 2018 Universidad de Santander UDES Campus Universitario Lagos del Caciqueeng
dc.sourcehttps://revistas.udes.edu.co/aibi/article/view/1623spa
dc.titleDesarrollo de una metodología para la predicción de curvas características en bombas periféricasspa
dc.titleDevelopment of methodology for characteristic curves prediction in regenerative pumpseng
dc.typeArtículo de revistaspa
dcterms.referencesF. Posso, J. C. Acevedo Paez, and J. Hernández, “El impacto económico de las energías renovables,” Aibi Rev. Investig. Adm. e Ing., pp. 22–26, Jul. 2014.spa
dcterms.referencesG. Silva-Monsalve, “Ciencia, tecnología e innovación: un análisis filosófico y psicológico desde lo abstracto hacia lo fáctico,” Aibi Rev. Investig. Adm. e Ing., pp. 2–7, Jan. 2019.spa
dcterms.referencesJ. D. Smith, V. Sreedharan, M. Landon, and Z. P. Smith, “Advanced design optimization of combustion equipment for biomass combustion,” Renew. Energy, vol. 145, pp. 1597–1607, 2020.spa
dcterms.referencesT. K. Ibrahim and M. M. Rahman, “Optimum Performance Improvements of the Combined Cycle Based on an Intercooler–Reheated Gas Turbine,” J. Energy Resour. Technol., vol. 137, no. 6, 2015.spa
dcterms.referencesG. Khankari, J. Munda, and S. Karmakar, “Power Generation from Condenser Waste Heat in Coal-fired Thermal Power Plant Using Kalina Cycle,” Energy Procedia, vol. 90, no. December 2015, pp. 613–624, 2016.spa
dcterms.referencesC. Liu, W. Bu, and D. Xu, “Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm,” Int. J. Heat Mass Transf., 2017.spa
dcterms.referencesJ. Wen, Y. Li, A. Zhou, and K. Zhang, “An experimental and numerical investigation of flow patterns in the entrance of plate-fin heat exchanger,” Int. J. Heat Mass Transf., vol. 49, no. 9–10, pp. 1667–1678, May 2006.spa
dcterms.referencesA. Bengoechea, R. Antón, G. S. Larraona, A. Rivas, J. C. Ramos, and Y. Masip, “PIV measurements and a CFD benchmark study of a screen under fan-induced swirl conditions,” Int. J. Heat Fluid Flow, vol. 46, pp. 43–60, 2014.spa
dcterms.referencesZ. Zhang, LDA application methods: laser Doppler anemometry for fluid dynamics, no. 1. Switzerland: Springer Heidelberg, 2010.spa
dcterms.referencesM. Yari, “Exergetic analysis of various types of geothermal power plants,” Renew. Energy, vol. 35, no. 1, pp. 112–121, 2010.spa
dcterms.referencesC. N. Jayapragasan and K. J. Reddy, “Design optimization and experimental study on the blower for fluffs collection system,” J. Eng. Sci. Technol., vol. 12, no. 5, pp. 1318–1336, 2017.spa
dcterms.referencesM. Cudina, “Detection of cavitation phenomenon in a centrifugal pump using audible sound,” Mech. Syst. Signal Process., vol. 17, no. 6, pp. 1335–1347, 2003.spa
dcterms.referencesE. C. Bacharoudis, A. E. Filios, M. D. Mentzos, and D. P. Margaris, “Parametric study of a centrifugal pump impeller by varying the outlet blade angle,” Open Mech. Eng. J., vol. 2, no. 5, pp. 75–83, 2008.spa
dcterms.referencesX. Qiu, D. Japikse, J. Zhao, and M. R. Anderson, “Analysis and Validation of a Unified Slip Factor Model for Impellers at Design and Off-Design Conditions,” J. Turbomach., vol. 133, no. 4, 2011.spa
dcterms.referencesM. Badami and M. Mura, “Theoretical model with experimental validation of a regenerative blower for hydrogen recirculation in a PEM fuel cell system,” Energy Convers. Manag., vol. 51, no. 3, pp. 553–560, Mar. 2010.spa
dcterms.referencesM. W. Heo, T. W. Seo, H. S. Shim, and K. Y. Kim, “Optimization of a regenerative blower to enhance aerodynamic and aeroacoustic performance,” J. Mech. Sci. Technol., vol. 30, no. 3, pp. 1197–1208, Mar. 2016.spa
dcterms.referencesS. Y. Jeon, C. K. Kim, S. M. Lee, J. Y. Yoon, and C. M. Jang, “Performance enhancement of a pump impeller using optimal design method,” J. Therm. Sci., vol. 26, no. 2, pp. 119–124, Apr. 2017.spa
dcterms.referencesMEPCO, “Marshall Engineered Products.” [Online]. Available: http://www.mepcollc.com/pdf/products/Regenerative_Turbine_Pumps_1484.pdf. [Accessed: 06-Jan-2016].spa
dcterms.referencesC. Mataix, Mecánica de Fluidos y Máquinas Hidráulicas, Edición: 2. México: Marcombo, 2004.spa
dcterms.referencesF. Zhang, K. Chen, D. Appiah, B. Hu, S. Yuan, and S. N. Asomani, “Numerical Delineation of 3D Unsteady Flow Fields in Side Channel Pumps for Engineering Processes,” Energies, vol. 12, no. 7, p. 1287, Apr. 2019.spa
dcterms.referencesF. Zhang, D. Appiah, J. Zhang, S. Yuan, M. K. Osman, and K. Chen, “Transient flow characterization in energy conversion of a side channel pump under different blade suction angles,” Energy, vol. 161, pp. 635–648, Oct. 2018.spa
dcterms.referencesT. Meakhail and S. Park, “An improved theory for regenerative pump performance,” Proc. Inst. Mech. Eng. Part A-journal Power Energy - PROC INST MECH ENG A-J POWER, vol. 219, pp. 213–222, 2005.spa
dcterms.referencesT. Capurso, L. Bergamini, and M. Torresi, “Design and CFD performance analysis of a novel impeller for double suction centrifugal pumps,” Nucl. Eng. Des., vol. 341, no. 2019, pp. 155–166, 2019.spa
dcterms.referencesA. M. Sl and D. J. M. Issac, “Design and analysis of centrifugal pump impeller using ansys fluent,” vol. 4, no. 10, p. 4, 2015.spa
dcterms.referencesI. Hernandez-Carrillo, C. J. Wood, and H. Liu, “Advanced materials for the impeller in an ORC radial microturbine,” Energy Procedia, vol. 129, pp. 1047–1054, 2017.spa
dcterms.referencesW. P. Adamczyk et al., “Application of LES-CFD for predicting pulverized-coal working conditions after installation of NOx control system,” Energy, vol. 160, pp. 693–709, 2018.spa
dcterms.referencesY. Sun, W. Liu, and T. yu Li, “Numerical investigation on noise reduction mechanism of serrated trailing edge installed on a pump-jet duct,” Ocean Eng., vol. 191, Nov. 2019.spa
dcterms.referencesT. Capurso et al., “Numerical investigation of cavitation on a NACA0015 hydrofoil by means of OpenFOAM,” Energy Procedia, vol. 126, pp. 794–801, 2017.spa
dcterms.referencesT. A. Meakhail, “Numerical study of unsteady flow characteristics in regenerative pump,” 2007.spa
dcterms.referencesM. A. Mohammadi and A. Jafarian, “CFD simulation to investigate hydrodynamics of oscillating flow in a beta-type Stirling engine,” Energy, vol. 153, pp. 287–300, Jun. 2018.spa
dcterms.referencesJ. Yao, W. Jin, and Y. Song, “RANS simulation of the flow around a tanker in forced motion,” Ocean Eng., vol. 127, no. October, pp. 236–245, 2016.spa
dcterms.referencesM. García Pérez and E. Vakkilainen, “A comparison of turbulence models and two and three dimensional meshes for unsteady CFD ash deposition tools,” Fuel, vol. 237, no. September 2018, pp. 806–811, 2019.spa
dcterms.referencesB. Olcucuoglu and B. H. Saracoglu, “A preliminary heat transfer analysis of pulse detonation engines,” in Transportation Research Procedia, 2018, vol. 29, pp. 279–288.spa
dcterms.referencesF. Quail, M. Stickland, and S. Thomas, “Rapid Manufacturing Technique used in the Development of a Regenerative Pump Impeller,” Lect. Notes Eng. Comput. Sci., vol. 16, 2009.spa
dcterms.referencesJ. Vencels, P. Råback, and V. Geža, “EOF-Library: Open-source Elmer FEM and OpenFOAM coupler for electromagnetics and fluid dynamics,” SoftwareX, vol. 9, pp. 68–72, 2019.spa
dcterms.referencesA. M. González, M. Vaz, and P. S. B. Zdanski, “A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers,” Appl. Therm. Eng., vol. 148, pp. 363–370, Feb. 2019.spa
dcterms.referencesS.-H. Kang and S.-H. Ryu, “Reynolds Number Effects on the Performance Characteristic of a Small Regenerative Pump,” J. Fluids Eng. Asme - J FLUID ENG, vol. 131, 2009.spa
dcterms.referencesW. Lyu and O. el Moctar, “Numerical and experimental investigations of wave-induced second order hydrodynamic loads,” Ocean Eng., vol. 131, no. May 2016, pp. 197–212, 2017.spa
dcterms.referencesV. Bone, R. McNaughton, M. Kearney, and I. Jahn, “Methodology to develop off-design models of heat exchangers with non-ideal fluids,” Appl. Therm. Eng., vol. 145, pp. 716–734, Dec. 2018.spa
dcterms.referencesF. J. Quail, T. Scanlon, and A. Baumgartner, “Design study of a regenerative pump using one-dimensional and three-dimensional numerical techniques,” Eur. J. Mech. B/Fluids, vol. 31, no. 1, pp. 181–187, Jan. 2012spa
dcterms.referencesRoth Pump Company, “ROTH PUMP COMPANY.” [Online]. Available: http://www.rothpump.com/index.html. [Accessed: 01-Feb-2016].spa
dcterms.referencesK. Vasudeva Karanth and N. Y. Sharma, CFD Analysis of a Regenerative Pump for Performance Enhancement. 2014.spa
dcterms.referencesN. D. Karlsen-Davies and G. A. Aggidis, “Regenerative liquid ring pumps review and advances on design and performance,” Applied Energy, vol. 164. Elsevier Ltd, pp.spa
dc.identifier.doihttps://doi.org/10.15649/2346030X.756
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.8 No.2.(2020)spa
dc.relation.citationendpage61spa
dc.relation.citationissue2(2020)spa
dc.relation.citationstartpage54spa
dc.relation.citationvolume8spa
dc.relation.citesValencia-Ochoa, G., Acevedo-Peñaloza, C., & Duarte-Forero, J. (2020). Desarrollo de una metodología para la predicción de curvas características en bombas periféricas. Aibi Revista De investigación, administración E ingeniería, 8(2), 54-61. https://doi.org/10.15649/2346030X.756
dc.relation.ispartofjournalAiBi Revista de Investigación, Administración e Ingenieríaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-SinDerivadas 4.0 Internacional (CC BY-ND 4.0)spa
dc.subject.proposalBalance energéticospa
dc.subject.proposalBombaspa
dc.subject.proposalDinámica de fluidosspa
dc.subject.proposalMetodologíaspa
dc.subject.proposalModelospa
dc.subject.proposalEnergy balanceeng
dc.subject.proposalFluid dynamicseng
dc.subject.proposalMethodologyeng
dc.subject.proposalModeleng
dc.subject.proposalPumpeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem