Show simple item record


Simulación CFD de la degradación mecánica por restricciones en flujo turbulento de soluciones HPAM EOR

dc.contributor.authorHerrera Quintero, Julia Jineth
dc.contributor.authorPrada, Luis
dc.contributor.authorMaya, Gustavo
dc.contributor.authorVERGEL, JOSE
dc.contributor.authorCastro Garcia, Ruben Hernan
dc.contributor.authorQUINTERO, HENDERSON
dc.contributor.authorJiménez, Robinson
dc.contributor.authorPérez, Eduar
dc.date.accessioned2021-12-03T15:53:57Z
dc.date.available2021-12-03T15:53:57Z
dc.date.issued2020-12-17
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1673
dc.description.abstractPolymer flooding is a widely used enhanced oil recovery (EOR) technology. The purpose of the polymer is to increase water viscosity to improve reservoir sweep efficiency. However, mechanical elements of the polymer injection facilities may impact the viscosity of the polymer negatively, decreasing it drastically. Mechanical degradation of the polymer occurs in case of flow restrictions with abrupt diameter changes in valves and control systems. Such flow restrictions may induce mechanical stresses along the polymer chain, which can result in its rupture. In this research, physical experiments and numerical simulations using CFD (Computational Fluid Dynamics) were used to propose a model for estimating the mechanical degradation for the flow of polymer solutions. This technique involves the calculation of velocity gradients, pressure drawdown, and polymer degradation of the fluid through geometry restriction. The simulations were validated through polymer injection experiments. The results show that with the greater volumetric flow and lower effective diameters, there is more mechanical degradation due to polymer shearing; nonetheless, this depends on the rheology properties inherent in each polymer in an aqueous solution. This method is suitable to estimate the mechanical degradation of the polymer solution in flooding facilities and accessories. Further, the results obtained could enhance the use of the polymer, calculating its actual mechanical degradation, minimizing it, or using it to support the development of new accessories.eng
dc.description.abstractLa inyección de polímeros es un método de recobro de petróleo ampliamente utilizada. El propósito del polímero es incrementar la viscosidad del agua para mejorar la eficiencia de barrido, sin embargo, el paso del fluido por algunos equipos de las facilidades de inyección puede impactar la viscosidad del polímero, disminuyéndola drásticamente. La reducción de la viscosidad es debido a la degradación mecánica del polímero que ocurre en las restricciones del flujo donde hay cambios abruptos de diámetro como en válvulas y sistemas de control. Estas restricciones de flujo inducen altos esfuerzos mecánicos o de corte en la cadena del polímero, que pueden resultar en el rompimiento de estas.Experimentos y simulaciones numéricas usando Dinámica de Fluidos Computacional fueron realizadas para proponer un modelo que estime la tasa de degradación mecánica para el flujo de soluciones poliméricas, que involucran el cálculo de gradientes de velocidad, caídas de presión y degradaciones de polímero en el paso del fluido a través de geometrías de equipos que presentan restricciones al flujo. Las simulaciones fueron validadas mediante comparaciones con los resultados de las pruebas de laboratorio. Los resultados muestran que a mayores flujos volumétricos y menores diámetros efectivos de restricción se producen mayores degradaciones mecánicas por cizallamiento del polímero, sin embargo, esto depende de las propiedades reológicas propias de cada polímero en solución acuosa.El modelo desarrollado es muy útil para estimar la degradación mecánica del polímero en su paso por instalaciones y equipos de las facilidades de inyección, además los resultados obtenidos podrían optimizar el uso del polímero calculando la degradación mecánica real de cada polímero y minimizándola o como soporte en el diseño de nuevos equipos o accesorios con menor degradación mecánica.spa
dc.format.extent16 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCT&F - Ciencia, Tecnología y Futurospa
dc.relation.ispartofCT&F - Ciencia, Tecnología y Futuro
dc.rights(c) 2020 CT&F - Ciencia, Tecnología y Futuroeng
dc.sourcehttps://ctyf.journal.ecopetrol.com.co/index.php/ctyf/article/view/255spa
dc.titleCFD simulation of HPAM EOR solutions mechanical degradation by restrictions in turbulent floweng
dc.titleSimulación CFD de la degradación mecánica por restricciones en flujo turbulento de soluciones HPAM EORspa
dc.typeArtículo de revistaspa
dcterms.referencesKing, M. J., and Dunayevsky, V. A. (1989). Why Waterflood Works: A Linearized Stability Analysis. Society of Petroleum Engineers. https://doi.org/10.2118/SPE-19648-MS.spa
dcterms.referencesZaitoun, A., Makakou, P., Blin, N., Al-Maamari, R. S., Al-Hashmi, A.-A. R., and Abdel-Goad, M. (2012). Shear Stability of EOR Polymers. Society of Petroleum Engineers. https://doi.org/10.2118/141113-PA.spa
dcterms.referencesMaerker, J., 1976. Mechanical Degradation of Partially Hydrolyzed Polyacrylamide Solutions in Unconsolidated Porous Media. Society of Petroleum Engineers Journal, 16(04), pp. 172-174. https://doi.org/10.2118/5672-PAspa
dcterms.referencesNoik, C. H., Delaplace, P. H., and Muller, G. (1995). Physico-chemical characteristics of polyacrylamide solutions after mechanical degradation through a porous medium. In SPE International symposium on oilfield chemistry. Society of Petroleum Engineers. https://doi.org/10.2118/28954-MSspa
dcterms.referencesSorbie, K., 1991. Polymer Improved Oil Recovery. Glasgow and London: Blackie and Son Ltd. https://doi.org/10.1007/978-94-011-3044-8spa
dcterms.referencesAl Hashmi, A. R., Al Maamari, R. S., Al Shabibi, I. S., Mansoor, A. M., Zaitoun, A., and Al Sharji, H. H. (2013). Rheology and mechanical degradation of high-molecular-weight partially hydrolyzed polyacrylamide during flow through capillaries. Journal of Petroleum Science and Engineering, 105, 100-106. https://doi.org/10.1016/j.petrol.2013.03.021.spa
dcterms.referencesManrique, E., Ahmadi, M., Samani, S. (2017). Historical and recent observations in Polymer Floods: An Update Review.CT&F - Ciencia, Tecnología y Futuro, 6(5), 17 - 48. https://doi.org/10.29047/01225383.72.spa
dcterms.referencesMorel, D. C., Jouenne, S., Vert, M., and Nahas, E. (2008). Polymer injection in deep offshore field: the Dalia Angola case. In SPE annual technical conference and exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/116672-MS.spa
dcterms.referencesTheriot, T. P., et al., 2018. Evaluation of Viscosity Loss of Viscosified Brine Solutions Due to Shear Degradation in Distribution System Components. Society of Petroleum Engineers, pp. SPE-190178-MS. https://doi.org/10.2118/190178-MS.spa
dcterms.referencesStandnes, D. C. and Skjevrak, I., 2014. Literature review of implemented polymer field projects. Journal of Petroleum Science and Engineering, Volumen 122, pp. 761-775. https://doi.org/10.1016/j.petrol.2014.08.024.spa
dcterms.referencesStavland, A., Asen, S. M., Mebratu, A., and Gathier, F. (2016). Impact of Choke Valves on the IOR Polymer Flooding: Lessons Learned from Large Scale Tests. Proc., IOR. Norway, 18-22.spa
dcterms.referencesDupas, A., Henaut, I., Rousseau, D., Poulain, P., Tabary, R., Argillier, J. F., and Aubry, T. (2013). Impact of polymer mechanical degradation on shear and extensional viscosities: toward better injectivity forecasts in polymer flooding operations. In SPE international symposium on oilfield chemistry. Society of Petroleum Engineers. https://doi.org/10.2118/164083-MS.spa
dcterms.referencesJouenne, S., Chakibi, H., and Levitt, D. (2018). Polymer stability after successive mechanical-degradation events. SPE journal, 23 (01), 18-33. https://doi.org/10.2118/186103-PA.spa
dcterms.referencesCulter, J. D., Zakin, J. L., and Patterson, G. K. (1975). Mechanical degradation of dilute solutions of high polymers in capillary tube flow. Journal of Applied Polymer Science, 19( 12), 3235-3240. https://doi.org/10.1002/app.1975.070191210.spa
dcterms.referencesBinding, T., Phillips, P. and Phillips, T., 2006. Contraction/expansion flows: the pressure drop and related issue. J. Non-Newton. Fluid Mech., Volumen 137, pp. 31-38. https://doi.org/10.1016/j.jnnfm.2006.03.006.spa
dcterms.referencesGupta, R. and Sridhar, T., 1985. Viscoelastic effects in non-newtonian flows through porous media. Rheologica Acta, 24(2), pp. 148-151. https://doi.org/10.1007/BF01333242.spa
dcterms.referencesAguayo, J., Tamaddon-Jahromi, H. and Webster, M., 2008. Excess pressure-drop estimation in contraction and expansion flows for constant shear-viscosity, extension strain-hardening fluids. J. Non-Newtonian Fluid Mech. , Volumen 153, pp. 157-176. https://doi.org/10.1016/j.jnnfm.2008.05.004.spa
dcterms.referencesBaloch, A., Townsend, P. and Webster, M., 1996. On vortex development in viscoelastic expansion and contraction flows. Journal of Non-newtonian Fluid Mechanics, 65 (2-3), pp. 133-149. https://doi.org/10.1016/0377-0257(96)01470-X.spa
dcterms.referencesOliveira, P. J., 2003. Asymmetric flows of viscoelastic fluids in symmetric planar expansion geometries. Journal of Non-newtonian Fluid Mechanics, 114(1), pp. 33-63. https://doi.org/10.1016/S0377-0257(03)00117-4.spa
dcterms.referencesMissirlis, K., Assimacopoulos, D., and Mitsoulis, E., 1998. A finite volume approach in the simulation of viscoelastic expansion flows. Journal of Non-newtonian Fluid Mechanics, 78(), pp. 91-118. https://doi.org/10.1016/S0377-0257(98)00057-3.spa
dcterms.referencesWalters, P. T. a. K., 1994. Expansion flows on non-newtonian liquids. Chemical Engineering Science, 49(5), pp. 748-763. https://doi.org/10.1016/0009-2509(94)85020-8.spa
dcterms.referencesANSYS fluent 18.1. ANSYS, Canonsburg, PA (2017).spa
dcterms.referencesCastro, R., Maya, G., Jimenez R., Quintero, H., Díaz, V., Colmenares, K., Palma J., Delgadillo, C., and Perez, R.(2016). Polymer flooding to improve volumetric sweep efficiency in waterflooding processes. CT y F - Ciencia, Tecnologia y Futuro. 6(3).pp 71-90. https://doi.org/10.29047/01225383.10.spa
dcterms.referencesBestul, A. B. (1956). Kinetics of capillary shear degradation in concentrated polymer solutions. The Journal of Chemical Physics, 24(6), 1196-1201. https://doi.org/10.1063/1.1742739.spa
dcterms.referencesRP63, A. P. I. (1990). Recommended Practices for Evaluation of Polymers Used in API RP63. Recommended Practices for Evaluation of Polymers Used in enhanced oil recovery operations. Washington.spa
dcterms.referencesMATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States.spa
dcterms.referencesFluent, A. N. S. Y. S. 16.2: Fluent Theory Guide. ANSYS Help Viewer.spa
dcterms.referencesWang, D., Cheng, J., Yang, Q., Wenchao, G., Qun, L., and Chen, F. (2000). Viscous-elastic polymer can increase microscale displacement efficiency in cores. In SPE annual technical conference and exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/63227-MS.spa
dcterms.referencesCulter, J. D., Zakin, J. L., and Patterson, G. K. (1975). Mechanical degradation of dilute solutions of high polymers in capillary tube flow. Journal of Applied Polymer Science, 19(12), 3235-3240. https://doi.org/10.1002/app.1975.070191210.spa
dc.identifier.doihttps://doi.org/10.29047/01225383.255
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.10 No.2.(2020)spa
dc.relation.citationendpage129spa
dc.relation.citationissue2(2020)spa
dc.relation.citationstartpage115spa
dc.relation.citationvolume10spa
dc.relation.citesHerrera, J., Prada, L., Maya, G., Gomez, J. L., Castro, R., Quintero, H., Diaz, R., & Perez, E. (2020). CFD simulation of HPAM EOR solutions mechanical degradation by restrictions in turbulent flow. CT&F - Ciencia, Tecnología Y Futuro, 10(2), 115-129. https://doi.org/10.29047/01225383.255
dc.relation.ispartofjournalCT&F - Ciencia, Tecnología y Futurospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalComputational Fluid-Dynamicseng
dc.subject.proposalMechanical Degradationeng
dc.subject.proposalHPAM Polymeric solutionseng
dc.subject.proposalEnhanced Oil Recoveryeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record