Mostrar el registro sencillo del ítem

dc.contributor.authorPérez, Eduar
dc.contributor.authorRomero, Iván
dc.contributor.authorAlbis, Alberto
dc.contributor.authorCarmona, Mauricio
dc.date.accessioned2021-12-02T22:41:20Z
dc.date.available2021-12-02T22:41:20Z
dc.date.issued2021-02-05
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1671
dc.description.abstractThis paper presents a transient heat and mass transfer model with experimental validation of a finned cylindrical adsorbent bed for performance analysis in chemisorption refrigeration system. The approximate solution for the mathematical model, including transient heat and mass transfer equations in cylindrical coordinates, was obtained by implementing the Crank-Nicholson approach in a finite difference scheme. Geometrical configuration and physical parameters, including bed material thermal properties and TGA-based kinetic modeling for reaction rate estimation, were used as model data inputs to predict thermal bed distribution, heat flows, and coefficient of performance for a refrigeration system. Results from the model were validated with transient data from a chemical sorption refrigeration test bench. Refrigeration system reactor was made of expanded graphite/activated carbon/lithium chloride (AC/EG/LiCl)-adsorbent (NH3 in solution with a 25% concentration). The model demonstrated excellent agreement and an adequate representation of the physical phenomena, constituting a potential tool for efficiency-enhancing development of adsorption reactors for refrigeration systems.eng
dc.format.extent14 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherApplied Thermal Engineeringspa
dc.relation.ispartofApplied Thermal Engineering
dc.rights© 2020 Elsevier Ltd. All rights reserved.eng
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S1359431120337601spa
dc.titleModeling and experiments on a finned cylindrical reactor with expanded graphite/activated carbon/lithium chloride-ammonia for chemisorption refrigeration systemseng
dc.typeArtículo de revistaspa
dcterms.referencesN. Medini, B. Marmottant, S. El Golli, Etude d ’ une machine solaire autonome h fabriquer de la glace Study of a packaged solar ice maker, Int. J. Refrig. 1 (October) (1990) 363–367.spa
dcterms.referencesM. Delorme, R. Six, S.B.R. France, D. Mugnier, J.Q.T. France, Ce guide a ´et´e r´ealis´e par, 2005.spa
dcterms.referencesJ.K. Kiplagat, R.Z. Wang, R.G. Oliveira, T.X. Li, Lithium chloride - expanded graphite composite sorbent for solar powered ice maker,, Sol. Energy 84 (9) (2010) 1587–1594spa
dcterms.referencesJ.K. Kiplagat, R.Z. Wang, R.G. Oliveira, T.X. Li, M. Liang, Experimental study on the effects of the operation conditions on the performance of a chemisorption air conditioner powered by low grade heat, Appl. Energy 103 (2013) 571–580.spa
dcterms.referencesS. Wu, T.X. Li, T. Yan, R.Z. Wang, Experimental investigation on a thermochemical sorption refrigeration prototype using EG/SrCl2–NH3 working pair, Int. J. Refrig. 88 (Abr. 2018) 8–15.spa
dcterms.referencesK. Korhammer, K. Neumann, O. Opel, W.K.L. Ruck, Thermodynamic and kinetic study of CaCl2-CH3OH adducts for solid sorption refrigeration by TGA/DSC, Appl. Energy 230 (nov. 2018) 1255–1278.spa
dcterms.referencesY. Yuan, H. Bao, Z. Ma, Y. Lu, A.P. Roskilly, Investigation of equilibrium and dynamic performance of SrCl2-expanded graphite composite in chemisorption refrigeration system, Appl. Therm. Eng. 147 (Ene. 2019) 52–60.spa
dcterms.referencesJ. Gao, Y.C. Tian, L.W. Wang, X.F. Zhang, G.L. An, Investigation on bi-salt chemisorption system for long term energy storage, Chem. Eng. Sci. 221 (Ago. 2020), 115699.spa
dcterms.referencesL.Q. Zhu, et al., Experimental investigation on composite adsorbent – water pair for a solar-powered adsorption cooling system, Appl. Therm. Eng. 131 (Feb. 2018) 649–659.spa
dcterms.referencesH.J. Huang, G. Bin Wu, J. Yang, Y.C. Dai, W.K. Yuan, H.B. Lu, Modeling of gas-solid chemisorption in chemical heat pumps, Sep. Purif. Technol. 34 (1–3) (2004) 191–200.spa
dcterms.referencesH. Demir, M. Mobedi, S. Ülkü, Effects of porosity on heat and mass transfer in a granular adsorbent bed, Int. Commun. Heat Mass Transf. 36 (4) (Mar. 2009) 372–377.spa
dcterms.referencesR.H. Mohammed, O. Mesalhy, M.L. Elsayed, L.C. Chow, Assessment of numerical models in the evaluation of adsorption cooling system performance, Int. J. Refrig. 99 (2019) 166–175.spa
dcterms.referencesL. Jiang, L.W. Wang, Z.S. Zhou, F.Q. Zhu, R.Z. Wang, Investigation on nonequilibrium performance of composite adsorbent for resorption refrigeration, Energy Convers. Manag. 119 (Jul. 2016) 67–74.spa
dcterms.referencesL. Jiang, et al., Performance analysis on a novel compact two-stage sorption refrigerator driven by low temperature heat source, Energy 135 (Sep. 2017) 476–485.spa
dcterms.referencesC. Noriega, R. Oliveira, S. Colle, Effect of the reactor characteristics on the performance of a chemisorption refrigerator using an srcl2 composite sorbent, Heat Transf. Res. 46 (2) (2015) 159–178.spa
dcterms.referencesH.Z. Hassan, A.A. Mohamad, A review on solar-powered closed physisorption cooling systems, Renew. Sustain. Energy Rev. 16 (5) (Jun. 2012) 2516–2538.spa
dcterms.referencesT. Li, R. Wang, J.K. Kiplagat, A target-oriented solid-gas thermochemical sorption heat transformer for integrated energy storage and energy upgrade, AIChE J. 59 (4) (Abr. 2013) 1334–1347.spa
dcterms.referencesG. Li, S. Qian, H. Lee, Y. Hwang, R. Radermacher, Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application, Energy 65 (2014) 675–691.spa
dcterms.referencesM.H. Chahbani, J. Labidi, J. Paris, Modeling of adsorption heat pumps with heat regeneration, Appl. Therm. Eng. 24 (2–3) (2004) 431–447.spa
dcterms.referencesM. Carmona, E. P´erez, M. Palacio, Experimental evaluation of porosity, axial and radial thermal conductivity, of an adsorbent material composed by mixture of activated carbon, expanded graphite and lithium chloride, Appl. Therm. Eng. 150 (2019) 456–463.spa
dcterms.referencesM.J. Moran, Engineering thermodynamics, in: CRC Handb. Mech. Eng., Second ed., 2004, pp. 2-1–2-85.spa
dcterms.referencesM. Carmona, E. P´erez, J. Yepes, S. Villalobos, Experimental study on a chemisorption refrigeration system prototype using expanded graphite/activated carbon/Lithium chloride-Ammonia working pair in a solution of 25% NH3, Mater. Sci. Forum 947 (Mar. 2019) 52–57.spa
dc.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2020.116281
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol.184 (2021)spa
dc.relation.citationendpage14spa
dc.relation.citationissue(2021)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume184spa
dc.relation.citesPérez, E., Romero, I., Albis, A., & Carmona, M. (2021). Modeling and experiments on a finned cylindrical reactor with expanded graphite/activated carbon/lithium chloride-ammonia for chemisorption refrigeration systems. Applied Thermal Engineering, 184, 116281.
dc.relation.ispartofjournalApplied Thermal Engineeringspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalLithium chlorideeng
dc.subject.proposalAmmoniaeng
dc.subject.proposalChemisorption heat storageeng
dc.subject.proposalHeat and mass transfer modeleng
dc.subject.proposalExperimental validationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem