Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Taborda, Luis Lisandro
dc.contributor.authorPérez, Eduar
dc.contributor.authorQuintero, Daniel
dc.contributor.authorNoguera Polania, José Fernando
dc.contributor.authorZAMBRANO RODRIGUEZ, HABIB
dc.contributor.authorMaury, Heriberto
dc.contributor.authorEsparragoza, Ivan
dc.date.accessioned2021-12-02T22:25:56Z
dc.date.available2021-12-02T22:25:56Z
dc.date.issued2021-02-27
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1670
dc.description.abstractPurpose – This study aims to evaluate the impact breaking energy of the parts manufactured by the fused filament fabrication (FFF) method. The evaluation considers the use of the epoxy resin coating, different materials and different printing orientations. Design/methodology/approach – The authors developed an experimental statistical design using 54 experimental trials. The experiments’ output variable is the impact break energy of the parts manufactured by the FFF method. The input variables for the experiments consist of an epoxy resin coating (XTC-3DVR , generic resin and without resin coating), different filament materials (nylon 1 carbon fiber, polyethylene terephthalate and polycarbonate) and different printing orientations (flat, edge and vertical) used. The authors carried out the tests following the EN ISO 179-1. Findings – The use of resin coating has a significant influence on the impact energy of parts manufactured using the FFF method. The resin coating increases the impact resistance of parts processed by FFF by almost 100% of the value as compared to the parts without a resin coating. Postprocessing is useful on ductile materials and increases impact breaking energy at weak print orientations. Originality/value – This research opens a new opportunity to improve the mechanical properties of parts manufactured using the FFF method. The use of a resin coating reinforces the parts in weak print orientation.eng
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRapid Prototyping Journalspa
dc.relation.ispartofRapid Prototyping Journal
dc.rights© 2021, Emerald Publishing Limitedeng
dc.sourcehttps://www.emerald.com/insight/content/doi/10.1108/RPJ-08-2018-0194/full/htmlspa
dc.titleExperimental study of resin coating to improve the impact strength of fused filament fabrication process pieceseng
dc.typeArtículo de revistaspa
dcterms.referencesAhn, S.-H., Montero, M., Odell, D., Roundy, S. and Wright, P.K. (2002), “Anisotropic material properties of fused deposition modeling {ABS}”, Rapid Prototyping Journal, Vol. 8No. 4, pp. 248-257, doi: 10.1108/13552540210441166.spa
dcterms.referencesAlfredo, C. (2006), The Complete Part Design Handbook for Injection Molding of Thermoplastics, Hanser Gardner Publications, Inc. ISBN, OH.spa
dcterms.referencesBenwood, C., Anstey, A., Andrzejewski, J., Misra, M. and Mohanty, A.K. (2018), “Improving the impact strength and heat resistance of 3D printed models: structure, property, and processing correlationships during fused deposition modeling (FDM) of poly (lactic acid)”, ACS Omega, Vol. 3 No. 4, pp. 4400-4411.spa
dcterms.referencesCaminero, M.A., Chacon, J.M., Garcia-Moreno, I. and Rodriguez, G.P. (2018), “Impact damage resistance of 3D printed continuous fiber reinforced thermoplastic composites using fused deposition modeling”, Composites Part B: Engineering,Vol. 148, pp.93-103.spa
dcterms.referencesDawoud, M., Taha, I. and Ebeid, S.J. (2016), “Mechanical behavior of ABS: an experimental study using FDM and injection molding techniques”, Journal of Manufacturing Processes, Vol. 21, pp. 39-45.spa
dcterms.referencesDomingo-Espin, M., Puigoriol-Forcada, J.M., Garcia-Granada, A.-A., Lluma, J., Borros, S. and Reyes, G. (2015), “Mechanical property characterization and simulation of fused depositionmodeling polycarbonate parts”, Materials&Design, Vol. 83, pp. 670-677.spa
dcterms.referencesMontgomery, D.C. (2004), Design and Analysis of Experiments, John Wiley& Sons.spa
dcterms.referencesHsu, L.H., Huang, G.F., Lu, C.T., Hong, D.Y. and Liu, S.H. (2010), “The development of a rapid prototyping prosthetic socket coated with a resin layer for transtibial amputees”, Prosthetics and Orthotics International, Vol. 34 No. 1, pp. 37-45.spa
dcterms.referencesJo, K.-H., Jeong, Y.-S., Lee, J.-H. and Lee, S.-H. (2016), “A study of post-processing methods for improving the tightness of a part fabricated by fused deposition modeling”, International Journal of Precision Engineering andManufacturing, Vol. 17No. 11, pp. 1541-1546.spa
dcterms.referencesKannan, S. and Senthilkumaran, D. (2014), “Assessment of mechanical properties of Ni-coated ABS plastics using FDM process”, IJMME-IJENS, Vol. 14No. 3, pp. 30-35.spa
dcterms.referencesKannan, S. and Huang, A. (2013), “Fatigue analysis of FDM materials”, Rapid Prototyping Journal, Vol. 19 No. 4, pp. 291-299.spa
dcterms.referencesLee, J. and Huang, A. (2013), “Fatigue analysis of FDM materials”, Rapid Prototyping Journal, Vol. 19 No. 4, pp. 291-299.spa
dcterms.referencesMark, J.E (2009), Polymer Data Handbook, Oxford university press New York, NY, available at: https://books.google.com. co/books/about/Polymer_Data_Handbook.html?id=spa
dcterms.referencesMcLouth, T.D., Severino, J.V., Adams, P.M., Patel, D.N. and Zaldivar, R.J. (2017), “The impact of print orientation and raster pattern on fracture toughness in additively manufactured ABS”, Additive Manufacturing, Vol. 18, pp. 103-109.spa
dcterms.referencesObst, P., Launhardt, M., Drummer, D., Osswald, P.V. and Osswald, T.A. (2018), “Failure criterion for PA12 SLS additive manufactured parts”, Additive Manufacturing, Vol. 21, pp. 619-627.spa
dcterms.referencesRoberson, D.A., Perez, A.R.T., Shemelya, C.M., Rivera, A., MacDonald, E. and Wicker, R.B. (2015), “Comparison of stress concentrator fabrication for 3D printed polymeric izod impact test specimens”, Additive Manufacturing, Vol. 7, pp. 1-3.spa
dcterms.referencesShenzhen Esun Industrial Co. Ltd. (2019), “Product manual esun 3Dfilament”.spa
dcterms.referencesSmith, W.C. and Dean, R.W. (2013), “Structural characteristics of fused deposition modeling polycarbonate material”, Polymer Testing, Vol. 32 No. 8, pp. 1306-1312.spa
dcterms.referencesSood, A.K., Ohdar, R.K. and Mahapatra, S.S. (2010), “Parametric appraisal of the a mechanical property of fused deposition modeling processed parts”, Materials & Design, Vol. 31No. 1, pp. 287-295.spa
dcterms.referencesSzykiedans, K., Credo, W. and Osi nski, D. (2017), “Selected mechanical properties of PETG 3-D prints”, Procedia Engineering, Vol. 177, pp. 455-461.spa
dcterms.referencesTsouknidas, A., Pantazopoulos, M., Katsoulis, I., Fasnakis, D., Maropoulos, S. andMichailidis,N. (2016), “The impact absorption capacity of 3D-printed components fabricated by fused deposition modeling”, Materials & Design, Vol. 102, pp. 41-44.spa
dcterms.referencesUddin, M.S., Sidek, M.F.R., Faizal, M.A., Ghomashchi, R. and Pramanik, A. (2017), “Evaluating mechanical properties and failure mechanisms of fused deposition modeling acrylonitrile butadiene styrene parts”, Journal of Manufacturing Science and Engineering, Vol. 139 No. 8, pp. 81018spa
dcterms.referencesWang, L., Gramlich, W.M. and Gardner, D.J. (2017), “Improving the impact strength of poly (lactic acid) (PLA) infused layer modeling (FLM)”, Polymer, Vol. 114, pp. 242-248.spa
dcterms.referencesWeng, Z., Wang, J., Senthil, T. and Wu, L. (2016), “Mechanical and thermal properties of ABS/ montmorillonite nanocomposites for fused deposition modeling 3D printing”, Materials & Design, Vol. 102, pp. 276-283.spa
dc.identifier.doihttps://doi.org/10.1108/RPJ-08-2018-0194
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol.27 No.3.(2021)spa
dc.relation.citationendpage486spa
dc.relation.citationissue3(2021)spa
dc.relation.citationstartpage475spa
dc.relation.citationvolume27spa
dc.relation.citesTaborda, L. L. L., Pérez, E., Quintero, D., Polania, J. F. N., Rodriguez, H. Z., Maury, H., & Esparragoza, I. E. (2021). Experimental study of resin coating to improve the impact strength of fused filament fabrication process pieces. Rapid Prototyping Journal.
dc.relation.ispartofjournalRapid Prototyping Journalspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalFused deposition modelingeng
dc.subject.proposalFused filament fabricationeng
dc.subject.proposalImpact break energyeng
dc.subject.proposalImpact strengtheng
dc.subject.proposalResin coatingeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem