Mostrar el registro sencillo del ítem
Deep learning architecture for the recursive patterns recognition model
dc.contributor.author | Puerto, E | |
dc.contributor.author | Aguilar, J | |
dc.contributor.author | Reyes, J | |
dc.contributor.author | Sarkar, D | |
dc.date.accessioned | 2021-12-02T15:03:42Z | |
dc.date.available | 2021-12-02T15:03:42Z | |
dc.date.issued | 2018-12-07 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1651 | |
dc.description.abstract | In this work, we propose a deep learning approach for the recursive pattern recognition model, called AR2P (for its acronym in Spanish: "Algoritmo Recursivo de Reconocimiento de Patrones"), by extending its supervised learning capability towards a semi-supervised learning scheme. The deep learning architecture is composed of three phases: the first one, called discovery phase, discovers the atomic descriptors. The second one, called aggregation phase, creates a feature hierarchy (merge of descriptors) from atomic descriptors. Finally, the classification phase carries out the classification of the inputs based on the feature hierarchy. The last phase uses a supervised learning approach, while the first two follow an unsupervised learning approach. In this paper is tested the performance of the proposed model, using a dataset from the UCI Machine Learning Repository. | eng |
dc.format.extent | 08 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Journal of Physics: Conference Series | spa |
dc.relation.ispartof | Journal of Physics: Conference Series | |
dc.rights | © Copyright 2021 IOP Publishing | eng |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/1126/1/012035/meta | spa |
dc.title | Deep learning architecture for the recursive patterns recognition model | eng |
dc.type | Artículo de revista | spa |
dcterms.references | LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature 521 436 | spa |
dcterms.references | Schmidhuber J 2015 Deep learning in neural networks: An overview Neural networks 61 85-117 | spa |
dcterms.references | LeCun Y and Bengio Y 1995 The Handbook of Brain Theory and Neural Networks ed Michael A. Arbib (Massachusetts: MIT Press Cambridge) Convolutional networks for images, speech, and time series 255-258 | spa |
dcterms.references | Salakhutdinov R and Hinton G 2009 Proc. Intl Conference on Artificial Intelligence and Statistics ed David van Dyk and Max Welling (Florida USA: Journal of Machine Learning Research) Deep boltzmann machines 448-455 | spa |
dcterms.references | Hua Y, Guo J and Hua Z. 2015 Proceedings of International Conference on Intelligent Computing and Internet of Things (Harbin, China: IEEE) Deep belief networks and deep learning 1-4 | spa |
dcterms.references | Senior A, Sak H and Shafran I 2015 Proceedings International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Brisbane, QLD, Australia: IEEE) Context dependent phone models for LSTM RNN acoustic modelling 4585-4589 | spa |
dcterms.references | Puerto E and Aguilar J 2017 Un algoritmo recursivo de reconocimiento de patrones Revista Técnica de la Facultad de Ingeniería Universidad del Zulia 40 95-104 | spa |
dcterms.references | Puerto E, Aguilar J and Chavez D 2017 A New Recursive Patterns Matching Model Inspired in Systematic Theory of Human Mind International Journal of Advancements in Computing Technology (IJACT) 9 28-39 | spa |
dcterms.references | Puerto E and Aguilar J 2016 Proceedings Latin American Conference on Computational Intelligence (Cartagena, Colombia: IEEE) Formal description of a pattern for a recursive process of recognition 1-2 | spa |
dcterms.references | Puerto E and Aguilar J 2016 Learning algorithm for the recursive pattern recognition model Appl. Artif. Intell 30 662-678 | spa |
dcterms.references | Puerto E, Aguilar J and Perez B 2014 Proc. Congreso Internacional en Innovación y Apropiación de las Tecnologías de la Información y las Comunicaciones (Bucaramanga, Colombia: UNAB) Análisis de la teoría de la Mmnte humana basada en el reconocimiento de patrones cap. 21 | spa |
dcterms.references | Kurzweil R 2013 How to make mind: Can Nonbiological Brains Have Real Minds of Their Own? The Futurist 47 14-17 | spa |
dcterms.references | Puerto E, Aguilar J and Chávez D 2018 A recursive patterns matching model for the dynamic pattern recognition problem Appl. Artif. Intell. 32 419-432 | spa |
dcterms.references | Aguilar J 2001 Learning algorithm and retrieval process for the multiple classes random neural network model Neural Processing Letters 13 81-91 | spa |
dcterms.references | Aguilar J 1998 Definition of an energy function for the random neural to solve optimization problems Neural Networks 11 731-737 | spa |
dcterms.references | Pham D, Dimov S and Nguyen C 2005 Selection of K in K-means clustering Proc. Inst. Mech. Eng. 219 103-119 | spa |
dcterms.references | Pelleg D and Moore A 2000 Proceedings of the Seventeenth International Conference on Machine learning (ICML) (Stanford, USA: Stanford University) X-means: Extending K-means with efficient estimation of the number of clusters 727-734 | spa |
dcterms.references | Ester M, Kriegel H, Sander J and Xu X 1996 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining ed Evangelos Simoudis, Jiawei Han and Usama Fayyad (Portland, USA: AAAI American Association for Artificial Intelligence) A density-based algorithm for discovering clusters in large spatial databases with noise 226-231 | spa |
dc.identifier.doi | https://doi.org/10.1088/1742-6596/1126/1/012035 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol.1126 No.1.(2018) | spa |
dc.relation.citationendpage | 8 | spa |
dc.relation.citationissue | 1(2018) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 1126 | spa |
dc.relation.cites | Puerto, E., Aguilar, J., Reyes, J., & Sarkar, D. (2018, November). Deep learning architecture for the recursive patterns recognition model. In Journal of Physics: Conference Series (Vol. 1126, No. 1, p. 012035). IOP Publishing. | |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |