• español
    • English
UFPS

Repositorio Digital

  • Directrices
    • Autorización publicación
    • Carta a directores de programa
    • Carta a graduados
    • Constancia de entrega de documento en Biblioteca
  • English 
    • español
    • English
  • Login
logo acreditacion
  • Colecciones Comunities
  • Autor Authors
  • Título Titles
  • Fecha Dates
  • Materias Subjects
View Item 
  •   DSpace Home
  • B. Investigación
  • BA. Grupos de Investigación
  • Inteligencia Artificial - GIA
  • View Item
  •   DSpace Home
  • B. Investigación
  • BA. Grupos de Investigación
  • Inteligencia Artificial - GIA
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cambiar vista

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResource TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsResource Type

My Account

LoginRegister

Statistics

View Usage Statistics

Predicting student drop-out rates using data mining techniques: A case study


PEREZ GUTIERREZ, BORIS RAINIERO cc
Castellanos, Camilo cc
Correal, Dario cc

Artículo de revista


2018-12-14

IEEE Colombian Conference on Applications in Computational Intelligence

Colombia

Student drop outBuscar en Repositorio UFPS
Student desertion predictionBuscar en Repositorio UFPS
Educational data miningBuscar en Repositorio UFPS
Prediction modelsBuscar en Repositorio UFPS

The prevention of students dropping out is considered very important in many educational institutions. In this paper we describe the results of an educational data analytics case study focused on detection of dropout of Systems Engineering (SE) undergraduate students after 6 years of enrollment in a Colombian university. Original data is extended and enriched using a feature engineering process. Our experimental results showed that simple algorithms achieve reliable levels of accuracy to identify predictors of dropout. Decision Trees, Logistic Regression, Naive Bayes and Random Forest results were compared in order to propose the best option. Also, Watson Analytics is evaluated to establish the usability of the service for a non expert user. Main results are presented in order to decrease the dropout rate by identifying potential causes. In addition, we present some findings related to data quality to improve the students data collection process.

http://repositorio.ufps.edu.co/handle/ufps/1650

https://link.springer.com/chapter/10.1007/978-3-030-03023-0_10

  • Inteligencia Artificial - GIA [31]

Descripción: Predicting student drop-out rates using data mining techniques. A case study.pdf
Título: Predicting student drop-out rates using data mining techniques. A case study.pdf
Tamaño: 2.400Mb

Unicordoba LogoPDFOpen AccessFLIPLEER EN FLIP

Show full item record

Cita

Cómo citar

Cómo citar

Miniatura

Thumbnail

Gestores Bibliograficos

Exportar a Bibtex

Exportar a RIS

Exportar a Excel

Buscar en google Schoolar

Buscar en microsoft academic

untranslated

Código QR

Envíos recientes

    No hay artículos recientes
Image
Image
Image
Image
Image
Image
Image
‹›
Logo Pie de Página UFPS

Portales Institucionales

  • Divisist
  • Pagos de Egresados y Externos
  • Piagev
  • PDQRS
  • DatarSoft
  • Sistema de Nómina
  • DISERACA

Enlaces de Interés

  • Plan Anticorrupción
  • Proceso de selección
  • Contratación
  • Proceso democrático
  • Derechos pecuniarios
  • Correo Electrónico Institucional
  • Consultorio Jurídico

Contactos

Avenida Gran Colombia No. 12E-96 Barrio Colsag,
San José de Cúcuta - Colombia
Teléfono (057)(7) 5776655

Solicitudes y correspondencia
Unidad de Gestión Documental
ugad@ufps.edu.co

Uso único y exclusivo para notificaciones judiciales:
notificacionesjudiciales@ufps.edu.co

-->
Sistema DSPACE - Metabiblioteca | Metabiblioteca