• español
    • English
UFPS

Repositorio Digital

  • Directrices
    • Autorización publicación
    • Carta a directores de programa
    • Carta a graduados
    • Constancia de entrega de documento en Biblioteca
  • English 
    • español
    • English
  • Login
logo acreditacion
  • Colecciones Comunities
  • Autor Authors
  • Título Titles
  • Fecha Dates
  • Materias Subjects
View Item 
  •   DSpace Home
  • B. Investigación
  • BA. Grupos de Investigación
  • Inteligencia Artificial - GIA
  • View Item
  •   DSpace Home
  • B. Investigación
  • BA. Grupos de Investigación
  • Inteligencia Artificial - GIA
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cambiar vista

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResource TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsResource Type

My Account

LoginRegister

Statistics

View Usage Statistics

An Ar2p Deep Learning Architecture for the Discovery and the Selection of Features


Aguilar, Jose cc
Puerto, E.
Vargas, R.
Reyes, J.

Artículo de revista


2019-07-13

Neural Processing Letters

Países Bajos

Deep learningBuscar en Repositorio UFPS
Pattern recognition processesBuscar en Repositorio UFPS
Feature engineeringBuscar en Repositorio UFPS
Pattern Recognition Theory of MindBuscar en Repositorio UFPS

In the context of pattern recognition processes with machine learning algorithms, either through supervised, semi-supervised or unsupervised methods, one of the most important elements to consider are the features that are used to represent the phenomenon to be studied. In this sense, this paper proposes a deep learning architecture for Ar2p, which is based on supervised and unsupervised mechanisms for the discovery and the selection of features for classification problems (called Ar2p-DL). Ar2p is an algorithm of pattern recognition based on the systematic functioning of the human brain. Ar2p-DL is composed of three phases: the first phase, called feature analysis, is supported by two feature-engineering approaches to discover or select atomic features/descriptors. The feature engineering approach used for the discovery, is based on a classical clustering technique, K-means; and the approach used for the selection, is based on a classification technique, Random Forest. The second phase, called aggregation, creates a feature hierarchy (merge of descriptors) from the atomic features/descriptors (it uses as aggregation strategy the DBSCAN algorithm). Finally, the classification phase carries out the classification of the inputs based on the feature hierarchy, using the classical Ar2p algorithm. The last phase of Ar2p-DL uses a supervised learning approach, while the first phases combine supervised and unsupervised learning approaches. To analyze the performance of Ar2p-DL, several tests have been made using different benchmarks (datasets) from the UCI Machine Learning Repository, in order to compare Ar2p-DL with other classification methods.

http://repositorio.ufps.edu.co/handle/ufps/1642

https://link.springer.com/article/10.1007/s11063-019-10062-4

  • Inteligencia Artificial - GIA [40]

Descripción: An Ar2p Deep Learning Architecture for the Discovery and the Selection of Features.pdf
Título: An Ar2p Deep Learning Architecture for the Discovery and the Selection of Features.pdf
Tamaño: 1.035Mb

Unicordoba LogoPDFClosed Access

Show full item record

Cita

Cómo citar

Cómo citar

Miniatura

Gestores Bibliograficos

Exportar a Bibtex

Exportar a RIS

Exportar a Excel

Buscar en google Schoolar

Buscar en microsoft academic

untranslated

Código QR

Envíos recientes

    No hay artículos recientes
Image
Image
Image
Image
Image
Image
Image
‹›
Logo Pie de Página UFPS

Portales Institucionales

  • Divisist
  • Pagos de Egresados y Externos
  • Piagev
  • PDQRS
  • DatarSoft
  • Sistema de Nómina
  • DISERACA

Enlaces de Interés

  • Plan Anticorrupción
  • Proceso de selección
  • Contratación
  • Proceso democrático
  • Derechos pecuniarios
  • Correo Electrónico Institucional
  • Consultorio Jurídico

Contactos

Avenida Gran Colombia No. 12E-96 Barrio Colsag,
San José de Cúcuta - Colombia
Teléfono (057)(7) 5776655

Solicitudes y correspondencia
Unidad de Gestión Documental
ugad@ufps.edu.co

Uso único y exclusivo para notificaciones judiciales:
notificacionesjudiciales@ufps.edu.co

-->
Sistema DSPACE - Metabiblioteca | Metabiblioteca