Mostrar el registro sencillo del ítem
Defining and measuring microservice granularity, a literature overview
dc.contributor.author | Vera-Rivera, Fredy H. | |
dc.contributor.author | Gaona, Carlos | |
dc.contributor.author | Astudillo, Hernán | |
dc.date.accessioned | 2021-11-26T16:10:41Z | |
dc.date.available | 2021-11-26T16:10:41Z | |
dc.date.issued | 2018-09-08 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1452 | |
dc.description.abstract | Background Microservices are an architectural approach of growing use, and the optimal granularity of a microservice directly affects the application’s quality attributes and usage of computational resources. Determining microservice granularity is an open research topic. Methodology We conducted a systematic literature review to analyze literature that addresses the definition of microservice granularity. We searched in IEEE Xplore, ACM Digital Library and Scopus. The research questions were: Which approaches have been proposed to define microservice granularity and determine the microservices’ size? Which metrics are used to evaluate microservice granularity? Which quality attributes are addressed when researching microservice granularity? Results We found 326 papers and selected 29 after applying inclusion and exclusion criteria. The quality attributes most often addressed are runtime properties (e.g., scalability and performance), not development properties (e.g., maintainability). Most proposed metrics were about the product, both static (coupling, cohesion, complexity, source code) and runtime (performance, and usage of computational resources), and a few were about the development team and process. The most used techniques for defining microservices granularity were machine learning (clustering), semantic similarity, genetic programming, and domain engineering. Most papers were concerned with migration from monoliths to microservices; and a few addressed green-field development, but none address improvement of granularity in existing microservice-based systems. Conclusions Methodologically speaking, microservice granularity research is at a Wild West stage: no standard definition, no clear development—operation trade-offs, and scarce conceptual reuse (e.g., few methods seem applicable or replicable in projects other than their initial proposal). These gaps in granularity research offer clear options to investigate on continuous improvement of the development and operation of microservice-based systems. | eng |
dc.format.extent | 47 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | PeerJ Computer Science | spa |
dc.relation.ispartof | PeerJ Computer Science | |
dc.rights | PeerJ, Inc. 2012-2021 | Public user content licensed CC BY 4.0 unless otherwise specified. | eng |
dc.source | https://peerj.com/articles/cs-695/# | spa |
dc.title | Defining and measuring microservice granularity, a literature overview | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Abdullah M, Iqbal W, Erradi A. 2019. Unsupervised learning approach for web application auto-decomposition into microservices. Journal of Systems and Software 151(3):243-257 | spa |
dcterms.references | Ahmadvand M, Ibrahim A. 2016. Requirements reconciliation for scalable and secure microservice (de)composition. | spa |
dcterms.references | Al-Debagy O, Martinek P. 2019. A new decomposition method for designing microservices. Periodica Polytechnica Electrical Engineering and Computer Science 63:274-281 | spa |
dcterms.references | Al-Debagy O, Martinek P. 2020. Extracting microservices’ candidates from monolithic applications: interface analysis and evaluation metrics approach. | spa |
dcterms.references | Alipour H, Liu Y. 2017. Online machine learning for cloud resource provisioning of microservice backend systems. | spa |
dcterms.references | Astudillo H. 2005. Five ontological levels to describe and evaluate software architectures. Revista Facultad de Ingeniería Universidad de Tarapacá 13(1):69-73 | spa |
dcterms.references | Baresi L, Garriga M, De Renzis A. 2017. Microservices identification through interface analysis. In: De Paoli F, Schulte S, Broch Johnsen E, eds. Service-Oriented and Cloud Computing. ESOCC 2017. Lecture Notes in Computer Science. Cham: Springer. 10465 | spa |
dcterms.references | Bass L, Clemens P, Katzman R. 1998. Software architecture in practice. Westford, Massachusetts: Addison Wesley. | spa |
dcterms.references | Bogner J, Wagner S, Zimmermann A. 2017a. Automatically measuring the maintainability of service-and microservice-based systems. | spa |
dcterms.references | Bogner J, Wagner S, Zimmermann A. 2017b. Towards a practical maintainability quality model for service-and microservice-based systems. | spa |
dcterms.references | Bouwers E, Correia JP, Van Deursen A, Visser J. 2011. Quantifying the analyzability of software architectures. | spa |
dcterms.references | Candela I, Bavota G, Russo B, Oliveto R. 2016. Using cohesion and coupling for software remodularization: is it enough? ACM Transactions on Software Engineering and Methodology 25(3):1-28 | spa |
dcterms.references | Chen R, Li S, Li Z. 2017. From monolith to microservices: a dataflow-driven approach. | spa |
dcterms.references | Christoforou A, Odysseos L, Andreou A. 2019. Migration of Software Components to Microservices: Matching and Synthesis. | spa |
dcterms.references | Cojocaru M, Uta A, Oprescu AM. 2019. MicroValid: a validation framework for automatically decomposed microservices. | spa |
dcterms.references | Cruz P, Astudillo H, Hilliard R, Collado M. 2019. Assessing migration of a 20-year-old system to a micro-service platform using ATAM. | spa |
dcterms.references | De Alwis AAC, Barros A, Fidge C, Polyvyanyy A. 2019. Business object centric microservices patterns. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Nature Switzerland: Springer. 476-495 | spa |
dcterms.references | De Alwis AAC, Barros A, Polyvyanyy A, Fidge C. 2018. Function-splitting heuristics for discovery of microservices in enterprise systems. | spa |
dcterms.references | Di Francesco P. 2017. Architecting microservices. | spa |
dcterms.references | Di Francesco P, Lago P, Malavolta I. 2019. Architecting with microservices: a systematic mapping study. Journal of Systems and Software 150(1):77-97 | spa |
dcterms.references | Gall H, Jazayeri M, Krajewski J. 2003. CVS release history data for detecting logical couplings. | spa |
dcterms.references | Ghofrani J, Lübke D. 2018. Challenges of microservices architecture: a survey on the state of the practice. | spa |
dcterms.references | Gouigoux JP, Tamzalit D. 2017. From monolith to microservices: lessons learned on an industrial migration to a web oriented architecture. | spa |
dcterms.references | Hamzehloui MS, Sahibuddin S, Salah K. 2019. A systematic mapping study on microservices Mohammad. In: Saeed F, Gazem N, Mohammed F, Busalim A, eds. IRICT: International Conference of Reliable Information and Communication Technology 2018. Advances in Intelligent Systems and Computing. Cham: Springer International Publishing. | spa |
dcterms.references | Hassan S, Bahsoon R. 2016. Microservices and their design trade-offs: a self-adaptive roadmap. | spa |
dcterms.references | Hassan S, Ali N, Bahsoon R. 2017. Microservice ambients: an architectural meta-modelling approach for microservice granularity. | spa |
dcterms.references | Hassan S, Bahsoon R, Kazman R. 2020. Microservice transition and its granularity problem: a systematic mapping study. Software: Practice and Experience 50(9):1-31 | spa |
dcterms.references | v | spa |
dcterms.references | Herold S, Klus H, Welsch Y, Deiters C, Rausch A, Reussner R, Krogmann K, Koziolek H, Mirandola R, Hummel B+2 more. 2008. CoCoME - The common component modeling example. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Berlin: Springer. 16-53 | spa |
dcterms.references | Hirzalla M, Cleland-Huang J, Arsanjani A. 2009. A metrics suite for evaluating flexibility and complexity in service oriented architectures. | spa |
dcterms.references | Homay A, de Sousa M, Zoitl A, Wollschlaeger M. 2020. Service granularity in industrial automation and control systems. | spa |
dcterms.references | Homay A, Zoitl A, De Sousa M, Wollschlaeger M, Chrysoulas C. 2019. Granularity cost analysis for function block as a service. | spa |
dcterms.references | Jamshidi P, Pahl C, Mendonca NC, Lewis J, Tilkov S. 2018. Microservices: the journey so far and challenges ahead. IEEE Software 35(3):24-35 | spa |
dcterms.references | Jin W, Liu T, Cai Y, Kazman R, Mo R, Zheng Q. 2019. Service candidate identification from monolithic systems based on execution traces. IEEE Transactions on Software Engineering 47(5):987-1007 | spa |
dcterms.references | Josélyne MI, Tuheirwe-Mukasa D, Kanagwa B, Balikuddembe J. 2018. Partitioning microservices - A Domain Engineering Approach. | spa |
dcterms.references | Kecskemeti G, Marosi AC, Kertesz A. 2016. The ENTICE approach to decompose monolithic services into microservices. In: 2016 International Conference on High Performance Computing and Simulation, HPCS 2016. 591-596 | spa |
dcterms.references | Kecskemeti G, Kertesz A, Marosi AC. 2017. Towards a methodology to form microservices from monolithic ones. In: Euro-Par 2016 Workshops - Lecture Notes in Computer Science. Springer Verlag. 284-295 | spa |
dcterms.references | Kitchenham B. 2004. Procedures for performing systematic reviews. | spa |
dcterms.references | Krause A, Zirkelbach C, Hasselbring W, Lenga S, Kroger D. 2020. Microservice decomposition via static and dynamic analysis of the monolith. Proceedings - 2020 IEEE International Conference on Software Architecture Companion, ICSA-C 2020:9-16 | spa |
dcterms.references | Kulkarni N, Dwivedi V. 2008. The role of service granularity in a successful SOA realization—A case study. | spa |
dcterms.references | Larman C. 2004. Applying UML and patterns: an introduction to object oriented analysis and design and interative development. (3rd Edition). Prentice Hall PTR, USA | spa |
dcterms.references | Li S, Zhang H, Jia Z, Li Z, Zhang C, Li J, Gao Q, Ge J, Shan Z. 2019. A dataflow-driven approach to identifying microservices from monolithic applications. Journal of Systems and Software 157(2):110380 | spa |
dcterms.references | Ma S-P, Chuang Y, Lan C-W, Chen H-M, Huang C-Y, Li C-Y. 2018. Scenario-based microservice retrieval using Word2Vec. | spa |
dcterms.references | Mancoridis S, Mitchell BS, Rorres C, Chen Y, Gansner ER. 1998. Using automatic clustering to produce high-level system organizations of source code. | spa |
dcterms.references | Marquez G, Astudillo H. 2018. Actual use of architectural patterns in microservices-based open source projects. | spa |
dcterms.references | Martin RC. 2002. Agile software development principles, patterns, and practices Alan Apt series. Upper Saddle River, NJ: Pearson Education, Inc. | spa |
dcterms.references | Mazlami G, Cito J, Leitner P. 2017. Extraction of microservices from monolithic software architectures. | spa |
dcterms.references | Newman S. 2015. Building microservices. Sebastopol, CA: O’Reilly Media, Inc. | spa |
dcterms.references | Nunes L, Santos N, Rito Silva A. 2019. From a monolith to a microservices architecture: an approach based on transactional contexts. | spa |
dcterms.references | Osses F, Márquez G, Astudillo H. 2018. An exploratory study of academic architectural tactics and patterns in microservices: a systematic literature review. | spa |
dcterms.references | Pautasso C, Zimmermann O, Amundsen M, Lewis J, Josuttis N. 2017. Microservices in practice, part 1: reality check and service design. IEEE Software 34(1):91-98 | spa |
dcterms.references | Perepletchikov M, Ryan C, Frampton K. 2007. Cohesion metrics for predicting maintainability of service-oriented software. | spa |
dcterms.references | Perepletchikov M, Ryan C, Frampton K, Tari Z. 2007. Coupling metrics for predicting maintainability in service-oriented designs. | spa |
dcterms.references | Prachitmutita I, Aittinonmongkol W, Pojjanasuksakul N, Supattatham M, Padungweang P. 2018. Auto-scaling microservices on IaaS under SLA with cost-effective framework. | spa |
dcterms.references | Rahman MI, Panichella S, Taibi D. 2019. A curated dataset of microservices-based systems. | spa |
dcterms.references | Ren Z, Wang W, Wu G, Gao C, Chen W, Wei J, Huang T. 2018. Migrating web applications from monolithic structure to microservices architecture. | spa |
dcterms.references | Richardson C. 2020. Microservices.io. Microservice architecture pattern. | spa |
dcterms.references | Rud D, Schmietendorf A, Dumke RR. 2006. Product metrics for service-oriented infrastructures. | spa |
dcterms.references | Saidani I, Ouni A, Mkaouer MW, Saied A. 2019. Towards automated microservices extraction using muti-objective evolutionary search. | spa |
dcterms.references | Salah T, Jamal Zemerly M, Yeun CY, Al-Qutayri M, Al-Hammadi Y. 2016. The evolution of distributed systems towards microservices architecture. | spa |
dcterms.references | Santos N, Salgado CE, Morais F, Melo M, Silva S, Martins R, Pereira M, Rodrigues H, Machado RJ, Ferreira N+1 more. 2019. A logical architecture design method for microservices architectures. | spa |
dcterms.references | Schmidt RA, Thiry M. 2020. Microservices identification strategies: a review focused on model-driven engineering and domain driven design approaches. | spa |
dcterms.references | Shadija D, Rezai M, Hill R. 2017. Microservices: granularity vs. performance. | spa |
dcterms.references | Soldani J, Tamburri DA, Van Den Heuvel W-J. 2018. The pains and gains of microservices: a systematic grey literature review. Journal of Systems and Software 146(3):215-232 | spa |
dcterms.references | Taibi D, Syst K. 2019. From monolithic systems to microservices: a decomposition framework based on process mining. | spa |
dcterms.references | Totalmetrics.com. 2020. Total Metrics Approach—Function points. | spa |
dcterms.references | Tusjunt M, Vatanawood W. 2018. Refactoring orchestrated web services into microservices using decomposition pattern. | spa |
dcterms.references | Tyszberowicz S, Heinrich R, Liu B, Liu Z. 2018. Identifying microservices using functional decomposition. In: Feng X, Müller-Olm M, Yang Z, eds. International Symposium on Dependable Software Engineering: Theories, Tools, and Applications. Lecture Notes in Computer Science. Cham: Springer International Publishing. 50-65 | spa |
dcterms.references | Vera-Rivera FH. 2018. A development process of enterprise applications with microservices. Encuentro internacional de Ciencias Aplicadas e Ingeniería (Universidad-Industria)—EISI 2018. Journal of Physics: Conference Series 1126:012017 | spa |
dcterms.references | Vera-Rivera FH, Gaona Cuevas CM, Astudillo H. 2019. Desarrollo de aplicaciones basadas en microservicios: tendencias y desafíos de investigación. Revista Ibérica de Sistemas e Tecnologias de Informação E 23:107-120 | spa |
dcterms.references | Vera-Rivera FH, Rojas Morales FA. 2010. Propuesta de aplicación de la Ingeniería del Software Basada en Componentes en el desarrollo de software empresarial. Revista Iteckne 7:128-135 | spa |
dcterms.references | Villamizar M, Garcés O, Castro H, Verano M, Salamanca L, Gil S. 2015. Evaluating the monolithic and the microservice architecture pattern to deploy web applications in the cloud/Evaluando el Patrón de Arquitectura Monolítica y de Micro Servicios Para Desplegar Aplicaciones en la Nube. | spa |
dcterms.references | Vural H, Koyuncu M, Guney S. 2017. A systematic literature review on microservices. | spa |
dcterms.references | Vural H, Koyuncu M, Misra S. 2018. A case study on measuring the size of microservices. In: Laganá A, Gavrilova ML, Kumar V, Mun Y, Tan CJK, Gervasi O, eds. International Conference on Computational Science and Its Applications—ICCSA 2018. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. 454-463 | spa |
dcterms.references | Wieringa R, Maiden N, Mead N, Rolland C. 2006. Requirements engineering paper classification and evaluation criteria: a proposal and a discussion. Requirements Engineering 11(1):102-107 | spa |
dcterms.references | Zimmermann O. 2017. Microservices tenets: agile approach to service development and deployment. Computer Science—Research and Development 32(3–4):301-310 | spa |
dcterms.references | Zimmermann O, Stocker M, Zdun U, Lübke D, Pautasso C. 2019. Microservice API patterns. | spa |
dc.identifier.doi | http://dx.doi.org/10.7717/peerj-cs.695 | |
dc.publisher.place | Estados Unidos | spa |
dc.relation.citationedition | (2021) | spa |
dc.relation.citationendpage | 47 | spa |
dc.relation.citationissue | (2021) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.cites | Vera-Rivera, F. H., Gaona, C., & Astudillo, H. (2021). Defining and measuring microservice granularity—a literature overview. PeerJ Computer Science, 7, e695. | |
dc.relation.ispartofjournal | PeerJ Computer Science | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Micro service architecture | eng |
dc.subject.proposal | Service computing | eng |
dc.subject.proposal | Micro-service granularity | eng |
dc.subject.proposal | Metrics | eng |
dc.subject.proposal | Monolith to microservices | eng |
dc.subject.proposal | Microservices decomposition | eng |
dc.subject.proposal | Quality attributtes | eng |
dc.subject.proposal | Sistematic literature review | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |