Mostrar el registro sencillo del ítem

dc.contributor.authorValencia, Guillermo
dc.contributor.authorRojas Suárez, Jhan Piero
dc.contributor.authorCampos Avella, Juan
dc.date.accessioned2021-11-19T16:36:39Z
dc.date.available2021-11-19T16:36:39Z
dc.date.issued2019
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1151
dc.description.abstractThis article shows the application of an energy management system and the calculation of energy efficiency indicators to a pyrotubular boiler, following the guidelines of the ISO50001 standard. The actual energy consumption indicators, the theoretical consumption index, the energy baseline and the efficiency index 100 were evaluated based on gas consumption and steam production data. As for the savings measure, a 20% reduction in gas consumption can be achieved by reducing the operational variability equivalent to 186,633 m3/month, thereby achieving a monthly savings of $70,920,717 COP and a large reduction in natural gas equivalent to a reduction in CO2 emissions (1,318,739.05 kg CO2/month). Also, the purges currently recorded in the boiler are higher than the recommended value for this equipment, and the excess air released varies between 6% and 11%, increasing the losses due to sensible heat. Three main implementations were applied to improve the energy performance of the steam boiler. The first saving implementation was the reduction of the generation pressure from 250 to 180 psig, achieving a lower gas temperature with a reduction of heat losses from the boiler, pipes and steam leakage losses, achieving a saving of 2% of the average natural gas consumption. The second implementation was the automation of the boiler purges, in accordance with the recommended value UNE-9075/85, achieving a total saving of 0.66%, and the third measurement allows on-line correction of the combustion air by direct measurement of O2, which maintains the measured oxygen value at 3%, which is the recommended value. With this practical and novel method energy performance indicator on the boiler, was increased the performance of the equipment, as well as the production costs and environmental impact reduction.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherAnkara , Turquiaspa
dc.relation.ispartofInternational Journal of Energy Economics and Policy
dc.rightsThis Journal is licensed under a Creative Commons Attribution 4.0 International Licenseeng
dc.sourcehttps://www.econjournals.com/index.php/ijeep/article/view/8188spa
dc.titleEnergy optimization of industrial steam boiler using energy performance indicatoreng
dc.typeArtículo de revistaspa
dcterms.referencesArens, M., Worrell, E. (2014), Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption. Energy, 73, 968-977spa
dcterms.referencesArıoğlu, A.M.Ö., Dhavale, D.G., Sarkis, J. (2017), Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain. Journal of Cleaner Production, 167, 1195-1207.spa
dcterms.referencesBaldi, S., Le Quang, T., Holub, O., Endel, P. (2017), Real-time monitoring energy efficiency and performance degradation of condensing boilers. Energy Conversion and Management, 136, 329-339.spa
dcterms.referencesBarma, M.C., Saidur, R., Rahman, S.M.A., Allouhi, A., Akash, B.A., Sait, S.M. (2017), A review on boilers energy use, energy savings, and emissions reductions. Renewable and Sustainable Energy Reviews, 79, 970-983spa
dcterms.referencesBehbahaninia, A., Ramezani, S., Hejrandoost, M.L. (2017), A loss method for exergy auditing of steam boilers. Energy, 140, 253-260spa
dcterms.referencesBui, B.B., de Villiers, C. (2017), Carbon emissions management control systems: Field study evidence. Journal of Cleaner Production, 166, 1283-1294spa
dcterms.referencesCardenas, E.Y., Valencia, O.G., Meriño, S.L. (2017), Application of an energy management system to develop an energy planning in a pickling line. Contemporary Engineering Sciences, 10(16), 785-794.spa
dcterms.referencesCarder, D., Ryskamp, R., Besch, M., Thiruvengadam, A. (2017), Emissions control challenges for compression ignition engines. Procedia IUTAM, 20, 103-111.spa
dcterms.referencesCucchiella, F., Gastaldi, M., Miliacca, M. (2018), The management of greenhouse gas emissions and its effects on firm performance. Journal of Cleaner Production, 167, 1387-1400.spa
dcterms.referencesDal Secco, S., Juan, O., Louis-Louisy, M., Lucas, J.Y., Plion, P., Porcheron, L. (2015), Using a genetic algorithm and CFD to identify low NOx configurations in an industrial boiler. Fuel, 158, 672-683.spa
dcterms.referencesFahad, M., Naqvi, S.A.A., Atir, M., Zubair, M., Shehzad, M.M. (2017), Energy management in a manufacturing industry through layout design. Procedia Manufacturing, 8, 168-174spa
dcterms.referencesFeng, T., Yang, Y., Xie, S., Dong, J., Ding, L. (2017), Economic drivers of greenhouse gas emissions in China. Renewable and Sustainable Energy Reviews, 78, 996-1006spa
dcterms.referencesFiedler, T., Mircea, P.M. (2012), Energy Management Systems According to the ISO 50001 Standard — Challenges and Benefits. In: 2012 International Conference on Applied and Theoretical Electricity (ICATE). p1-4spa
dcterms.referencesGarcía, P.M., Vakkilainen, E., Hyppänen, T. (2016), Unsteady CFD analysis of kraft recovery boiler fly-ash trajectories, sticking efficiencies and deposition rates with a mechanistic particle reboundstick model. Fuel, 181, 408-420spa
dcterms.referencesGeng, Y., We, C., Zhe, L., Anthony, S.F.C., Wenyi, H., Zhiqing, L., Shaozhuo, Z., Yiying, Q., Wei, Y., Xiaowei, C. (2017), A bibliometric review: Energy consumption and greenhouse gas emissions in the residential sector. Journal of Cleaner Production, 159, 301-316spa
dcterms.referencesHabib, M.A., Hasanuzzaman, M., Hosenuzzaman, M., Salman, A., Mehadi, M.R. (2016), Energy consumption, energy saving and emission reduction of a garment industrial building in Bangladesh. Energy, 112, 91-100spa
dcterms.referencesHwang, K.L., Choi, S.M., Kim, M.K., Heo, J.B., Zoh, K.D. (2017), Emission of greenhouse gases from waste incineration in Korea. Journal of Environmental Economics and Management, 196, 710-718spa
dcterms.referencesISO (International Organization for Standardization). (2011), ISO 50001 Energy Management Systems-Requirements with Guidance for Use. Geneva, Switzerland: ISO Central Secretariatspa
dcterms.referencesJayamaha, L. (2006), Energy-Efficient Building Systems: Green Strategies for Operation and Maintenance. New York: McGraw-Hillspa
dcterms.referencesJovanović, B., Filipović, J. (2016), ISO 50001 standard-based energy management maturity model proposal and validation in industry. Journal of Cleaner Production, 112, 2744-2755spa
dcterms.referencesJunga, R., Chudy, P., Pospolita, J. (2017), Uncertainty estimation of the efficiency of small-scale boilers. Measurement, 97, 186-194spa
dcterms.referencesKumar, A., Subramanian, K.A. (2017), Control of greenhouse gas emissions (CO2 , CH4 and N2 O) of a biodiesel (B100) fueled automotive diesel engine using increased compression ratio. Applied Thermal Engineering, 127, 95-105.spa
dcterms.referencesLloyd, S.A., Bur, C., Lappalainen, J., Andersson, A., Huotari, J., Bjorklund, R., Jantunen, J. (2013), Chemical sensor systems for emission control from combustions. Sensors and Actuators B: Chemical, 187, 184-190.spa
dcterms.referencesMay, G., Barletta, I., Stahl, B., Taisch, M. (2015), Energy management in production: A novel method to develop key performance indicators for improving energy efficiency. Applied Energy, 149, 46-61.spa
dcterms.referencesMecrow, B.C., Jack, A.G. (2008), Efficiency trends in electric machines and drives. Energy Policy, 36(12), 4336-4341.spa
dcterms.referencesMeschede, H., Dunkelberg, H., Stöhr, F., Peesel, R.H., Hesselbach, J. (2017), Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods. Energy, 128, 86-100.spa
dcterms.referencesMiremadi, I., Saboohi, Y., Jacobsson, S. (2018), Assessing the performance of energy innovation systems: Towards an established set of indicators. Energy Research and Social Science, 40, 159-176.spa
dcterms.referencesMoran, M.J., Saphiro, H.N., Boettner, D.D., Bailey, M.B. (2011), Fundamentals of Engineering Thermodynamics. New York: Wileyspa
dcterms.referencesNakano, K., Naoki, S., Toshifumi, N., Keisuke, S., Hirotaka, K., Masahiro, I., Nobuaki, H. (2016), Greenhouse gas emissions from round wood production in Japan. Journal of Cleaner Production, 170, 1654-1664spa
dcterms.referencesNikula, R.P., Ruusunen, M., Leiviskä, K. (2016), Data-driven framework for boiler performance monitoring. Applied Energy, 183, 1374-1388spa
dcterms.referencesPambudi, N.A., Fasola, M., Lukad, V.P., Ria, L., Danar, S.W., Muhammad, M., Lip, H.S. (2017), Performance evaluation and optimization of fluidized bed boiler in ethanol plant using irreversibility analysis. Case Studies in Thermal Engineering, 10, 283-291.spa
dcterms.referencesSantín, I., Barbu, M., Pedret, C., Vilanova, R. (2017), Control strategies for nitrous oxide emissions reduction on wastewater treatment plants operation. Water Research, 125, 466-477.spa
dcterms.referencesShen, B., Han, Y., Price, L., Lu, H., Liu, M. (2017), Techno-economic evaluation of strategies for addressing energy and environmental challenges of industrial boilers in China. Energy, 118, 526-533.spa
dcterms.referencesSkiba, Y.N., Parra-Guevara, D. (2013), Control of emission rates. Atmosfera, 26(3), 379-400.spa
dcterms.referencesValencia, O.G. (2011), Informe de Decisión Estratégica, 2016. International Organization for Standardization, ISO 50001.spa
dcterms.referencesValencia, O.G., Cardenas, Y., Ramos, E., Morales, A., Campos, J.C. (2017), Energy saving in industrial process based on the equivalent production method to calculate energy performance indicators. Chemical Engineering Transactions, 57, 709-714spa
dcterms.referencesZhang, N., Lu, B., Wang, W., Li, J. (2010), 3D CFD simulation of hydrodynamics of a 150 MWe circulating fluidized bed boiler. The Chemical Engineering Journal, 162(2), 821-828spa
dc.identifier.doihttps://doi.org/10.32479/ijeep.8188
dc.relation.citationeditionVol.9 No.6.(2019)spa
dc.relation.citationendpage117spa
dc.relation.citationissue6 (2019)spa
dc.relation.citationstartpage109spa
dc.relation.citationvolume9spa
dc.relation.citesOchoa, G. V. (2019). Energy optimization of industrial steam boiler using energy performance indicator. 670216917.
dc.relation.ispartofjournalInternational Journal of Energy Economics and Policyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalEnergy Optimizationeng
dc.subject.proposalSteam Boilereng
dc.subject.proposalEnergy Performance Indicatoreng
dc.subject.proposalISO 50001 Standard.eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem