Mostrar el registro sencillo del ítem

dc.contributor.authorVergel Ortega, Mawency
dc.contributor.authorIbarguen Mondragon, Eduardo
dc.contributor.authorGómez Vergel, Carlos Sebastian
dc.date.accessioned2021-11-18T15:01:32Z
dc.date.available2021-11-18T15:01:32Z
dc.date.issued2020-11-11
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1077
dc.description.abstractThe Malthus growth model is the most widely used law to model dynamic processes. In this work, we use the Malthusian theory to estimate the growth rate of new daily cases of COVID-19 infection and two periods of time in which this type of growth occurred, the first of 41 days and the second of 101 days. In the first one, the growth rate was 10 times greater than in the second one. From the results, it is concluded that the United States, Spain, France, Italy, Germany and the United Kingdom were the countries that had the greatest impact on exponential growth during the first period, while the Americas, Russia and India were the ones that contributed the most in the second one.eng
dc.description.abstractEl modelo de crecimiento de Malthus es la ley más utilizada para modelar procesos dinámicos. En este trabajo utilizamos la teoría maltusiana para estimar la tasa de crecimiento de los nuevos casos diarios de infección por COVID-19 y dos períodos de tiempo en los que se produjo este tipo de crecimiento, el primero de 41 días y el segundo de 101 días. En el primero, la tasa de crecimiento fue 10 veces mayor que en el segundo. De los resultados se concluye que Estados Unidos, España, Francia, Italia, Alemania y el Reino Unido fueron los países que tuvieron mayor impacto en el crecimiento exponencial durante el primer período, mientras que América, Rusia e India fueron los que más contribuyeron en el segundo.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista Boletin Redipespa
dc.relation.ispartofRevista Boletin Redipe
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.spa
dc.sourcehttps://revista.redipe.org/index.php/1/article/view/1119spa
dc.titleModel applied to exponental growth of covid 19eng
dc.typeArtículo de revistaspa
dcterms.referencesJuliano S (2007) Population dynamics Journal of the American Mosquito Control Association 23 (2) 265-275spa
dcterms.referencesJean R Mee T Kirkby N and Williams M 2015 Quantifying uncertainty in radiotherapy demand at the local and national lavel using the Malthus model Clin. Oncol 27(2) 92-98spa
dcterms.referencesBrander J and Taylor M (1998) The simple economics of Easter Island: A Ricardo-Malthus model of renewable use Am Econ Rev 88(1) 119-138spa
dcterms.referencesTurner M and Cunneen C (1986) Malthus and his time (New York: Springer)spa
dcterms.referencesIbarguen-Mondragón E, Romero J, Esteva L, Cerón M and Hidalgo-Bonilla S (2019) Stability and periodic solutions for a model of bacterial resistance to antibiotics caused by mutations and plasmids Appl. Math. Model 76 238-251spa
dcterms.referencesWangersky P (1978) Lotka-Volterra population models Annual Review of Ecology and Systematics 9 189-218spa
dcterms.referencesSmith D, Battle K, Hay S, Barker C, Scott T and McKenzie F (2012) Ross Macdonald and a theory for the dynamics and control of mosquito-transmitted pathogens PLoS pathog 8 4 e10025883spa
dcterms.referencesMonod J (1949) The growth of bacterial cultures Annual review of microbiology 3(1) 371-394spa
dcterms.referencesMalthus T, Winch D and James P (1992) Malthus An Essay on the Principle of Population (New York: Cambridge University Press)spa
dcterms.referencesApostolopoulos I, Mpesiana T (2020) Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks Physical and Engineering Sciences in Medicine 43(2) 635-640spa
dcterms.referencesDrummond A and Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees BMC Evol Biol 7(214) 725-736spa
dcterms.referencesIbarguen-Mondragón E, Revelo-Romo D, Hidalgo A, García H and Galeano L (2020) Mathematical modelling of MS2 virus inactivation by Al/Fe-PILC-activated catalytic wet peroxide oxidation J. Math. Anal. Appli. 385 7205spa
dcterms.referencesWorld Health Organization 2020 Coronavirus disease (2019) (COVID-19): situation report, 1spa
dcterms.referencesHongzhou L, Charles W, Stratton Y (2019) Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle, J Med Virol, Special Issue 92(4) 789-798spa
dc.identifier.doihttps://doi.org/10.36260/rbr.v9i11.1119
dc.publisher.placeBogota ,Colombiaspa
dc.relation.citationeditionVol.9 No.11.(2019)spa
dc.relation.citationendpage164spa
dc.relation.citationissue11 (2020)spa
dc.relation.citationstartpage159spa
dc.relation.citationvolume9spa
dc.relation.citesIbarguen-Mondragon E, Vergel-Ortega M, Gómez Vergel CS. El modelo de Malthus aplicado al crecimiento exponencial de Covid 19. bol.redipe [Internet]. 11 de noviembre de 2020 [citado 18 de noviembre de 2021];9(11):159-64. Disponible en: https://revista.redipe.org/index.php/1/article/view/1119
dc.relation.ispartofjournalRevista Boletin Redipespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalModelo de Malthusspa
dc.subject.proposalcrecimiento exponencial de COVID 19spa
dc.title.translatedEl modelo de Malthus aplicado al crecimiento exponencial de Covid 19
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem