Show simple item record

dc.contributor.authorPrada Botia, Gaudy Carolina
dc.contributor.authorValencia Ochoa, Guillermo
dc.contributor.authorDuarte Forero, Jorge
dc.date.accessioned2021-11-17T00:28:01Z
dc.date.available2021-11-17T00:28:01Z
dc.date.issued2020-07-17
dc.identifier.issn0959-6526
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1034
dc.description.abstractThe excessive and irrational use of non-renewable energy is the consequence of the interaction of economic growth and environmental pollution. Therefore, it is increasingly necessary to propose energy and environmental improvements in the energy conversion systems according to sustainable development goals, especially in internal combustion engines. The exergetic analyses are a great tool because they allow identifying the components of greater irreversibilities. However, sustainable continuous improvement and opportunities can be found only by means of its advanced development. The study showed that in the waste heat recovery of a 2 MW gas engine based on the recuperative organic Rankine cycle (RORC) using R123 as working fluid, much of the exergy destroyed was endogenous 105.08 kW (81.6%). Steel, copper and aluminum were the proposed materials for the construction of the components, and through a life cycle analysis, it was found that the significant environmental impacts were found in the turbine for the aluminum with a value of 27617.21 kg of CO2 equivalent. Through the carbon footprint and advanced exergo-environmental analysis, it was found that the heat exchanger 1 is the equipment with the largest endogenous exergy destruction opportunities for improvement, also is the heat exchanger device with the most significant rate of environmental impacts, and the recommended material to use in the construction phase of the life-time of the system is the aluminum.eng
dc.format.extent20 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Cleaner Productionspa
dc.relation.ispartofJournal of Cleaner Production
dc.rights© 2020 Elsevier Ltd. All rights reserved.eng
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S0959652620328833?via%3Dihub#!spa
dc.titleCarbon footprint analysis and advanced exergo-environmental modeling of a waste heat recovery system based on a recuperative organic Rankine cycleeng
dc.typeArtículo de revistaspa
dcterms.referencesAhmadi, P., Dincer, I., Rosen, M.A., 2012. Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration. Energy Convers. Manag. 64, 447e453. https://doi.org/10.1016/J.ENCONMAN.2012.06.001.spa
dcterms.referencesApostol, V., Pop, H., Dobrovicescu, A., Prisecaru, T., Alexandru, A., Prisecaru, M., 2015. Thermodynamic analysis of ORC configurations used for WHR from a turbocharged diesel engine. Procedia Eng. 100, 549e558. https://doi.org/ 10.1016/j.proeng.2015.01.402.spa
dcterms.referencesAyadi, A., Zanni-Merk, C., de Beuvron, F. de B., Krichen, S., 2018. A multi-objective method for optimizing the transittability of complex biomolecular networks. Procedia Comput. Sci. 126, 507e516. https://doi.org/10.1016/j.procs.2018.07.285.spa
dcterms.referencesBai, T., Yu, J., Yan, G., 2016. Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector. Energy 113, 385e398. https://doi.org/10.1016/ J.ENERGY.2016.07.048.spa
dcterms.referencesBari, S., Hossain, S.N., 2013. Waste heat recovery from a diesel engine using shell and tube heat exchanger. Appl. Therm. Eng. 61, 355e363. https://doi.org/ 10.1016/J.APPLTHERMALENG.2013.08.020.spa
dcterms.referencesBhering Trindade, A., Carlos Escobar Palacio, J., Martínez Gonzalez, A., Rúa- Orozco, D., Lora, E., Luiza Grillo Reno, M., Almaz an del Olmo, O., 2018. Advanced Exergy Analysis and Environmental Assesment of the Steam Cycle of an Incineration System of Municipal Solid Waste with Energy Recovery. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2017.11.083spa
dcterms.referencesBoyano, A., Morosuk, T., Blanco-Marigorta, A.M., Tsatsaronis, G., 2012. Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production. J. Clean. Prod. 20, 152e160. https://doi.org/ 10.1016/j.jclepro.2011.07.027.spa
dcterms.referencesChen, S.-J., Hwang, C.-L., 1992. In: Chen, S.-J., Hwang, C.-L. (Eds.), Fuzzy Multiple Attribute Decision Making Methods BT - Fuzzy Multiple Attribute Decision Making: Methods and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 289e486. https://doi.org/10.1007/978-3-642-46768-4_5.spa
dcterms.referencesDiaz, G.A., Forero, J.D., Garcia, J., Rincon, A., Fontalvo, A., Bula, A., Padilla, R.V., 2017. Maximum power from fluid flow by applying the first and second laws of thermodynamics. J. Energy Resour. Technol.139(3) 032903. https://doi.org/ 10.1115/1.4035021.spa
dcterms.referencesDing, Y., Liu, C., Zhang, C., Xu, X., Li, Q., Mao, L., 2018. Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid. Energy 145, 52e64. https://doi.org/10.1016/j.energy.2017.12.123.spa
dcterms.referencesDoroti c, H., Puksec, T., Dui c, N., 2019. Economical, environmental and exergetic multi-objective optimization of district heating systems on hourly level for a whole year. Appl. Energy 251, 113394. https://doi.org/10.1016/ j.apenergy.2019.113394spa
dcterms.referencesEl-Emam, R.S., Dincer, I., 2013. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 59, 435e444. https://doi.org/10.1016/j.applthermaleng.2013.06.005.spa
dcterms.referencesEtghani, M.M., Shojaeefard, M.H., Khalkhali, A., Akbari, M., 2013. A hybrid method of modified NSGA-II and TOPSIS to optimize performance and emissions of a diesel engine using biodiesel. Appl. Therm. Eng. 59, 309e315. https://doi.org/ 10.1016/j.applthermaleng.2013.05.041.spa
dcterms.referencesFeng, Y.Q., Hung, T.C., Wu, S.L., Lin, C.H., Li, B.X., Huang, K.C., Qin, J., 2017. Operation characteristic of a R123-based organic Rankine cycle depending on working fluid mass flow rates and heat source temperatures. Energy Convers. Manag. 131, 55e68. https://doi.org/10.1016/j.enconman.2016.11.004.spa
dcterms.referencesHuang, J., Sheer, T.J., Bailey-Mcewan, M., 2012. Heat transfer and pressure drop in plate heat exchanger refrigerant evaporators. Int. J. Refrig. 35, 325e335. https:// doi.org/10.1016/j.ijrefrig.2011.11.002.spa
dcterms.referencesImran, M., Pambudi, N.A., Farooq, M., 2017. Thermal and hydraulic optimization of plate heat exchanger using multi objective genetic algorithm. Case Stud. Therm. Eng. 10, 570e578. https://doi.org/10.1016/j.csite.2017.10.003.spa
dcterms.referencesImran, M., Usman, M., Park, B.-S., Kim, H.-J., Lee, D.-H., 2015. Multi-objective optimization of evaporator of organic Rankine cycle (ORC) for low temperature geothermal heat source. Appl. Therm. Eng. 80, 1e9. https://doi.org/10.1016/ j.applthermaleng.2015.01.034.spa
dcterms.referencesJouhara, H., Sayegh, M.A., 2018. Energy efficient thermal systems and processes. Therm. Sci. Eng. Prog. 7, 1e5. https://doi.org/10.1016/j.tsep.2018.07.016.spa
dcterms.referencesKelly, S., Morozyuk, T., 2006. Endogenous and Exogenous Exergy Destruction in Thermal Systems. https://doi.org/10.1115/IMECE2006-13675.spa
dcterms.referencesKelly, S., Tsatsaronis, G., Morosuk, T., 2009. Advanced exergetic analysis: approaches for splitting the exergy destruction into endogenous and exogenous parts. Energy 34, 384e391. https://doi.org/10.1016/j.energy.2008.12.007.spa
dcterms.referencesKolsch, B., Radulovic, J., 2015. Utilisation of diesel engine waste heat by Organic € Rankine Cycle. Appl. Therm. Eng. 78, 437e448. https://doi.org/10.1016/ j.applthermaleng.2015.01.004.spa
dcterms.referencesLecompte, S., Huisseune, H., Van Den Broek, M., Vanslambrouck, B., De Paepe, M., 2015. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2015.03.089.spa
dcterms.referencesLecompte, S., Oyewunmi, O., Markides, C., Lazova, M., Kaya, A., den Broek, M., De Paepe, M., 2017. Case study of an organic rankine cycle (ORC) for waste heat recovery from an electric arc furnace (EAF). Energies 10, 649.spa
dcterms.referencesLi, X., Zhou, H., Wang, Y., Qian, Y., Yang, S., 2015. Thermoeconomic analysis of oil shale retorting processes with gas or solid heat carrier. Energy 87, 605e614. https://doi.org/10.1016/J.ENERGY.2015.05.045.spa
dcterms.referencesMichos, C.N., Lion, S., Vlaskos, I., Taccani, R., 2017. Analysis of the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged heavy duty diesel power generator for marine applications. Energy Convers. Manag. 132, 347e360. https://doi.org/10.1016/j.enconman.2016.11.025.spa
dcterms.referencesMontazerinejad, H., Ahmadi, P., Montazerinejad, Z., 2019. Advanced exergy, exergoeconomic and exrgo-environmental analyses of a solar based trigeneration energy system. Appl. Therm. Eng. 152, 666e685. https://doi.org/10.1016/ j.applthermaleng.2019.01.040.spa
dcterms.referencesMorozyuk, T., Tsatsaronis, G., 2013. Strengths and Limitations of Advanced Exergetic Analyses, en: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). https://doi.org/10.1115/IMECE2013-64320.spa
dcterms.referencesNami, H., Anvari-Moghaddam, A., 2020. Small-scale CCHP systems for waste heat recovery from cement plants: thermodynamic, sustainability and economic implications. Energy. https://doi.org/10.1016/j.energy.2019.116634. Elsevier Ltd.spa
dcterms.referencesNavajas, A., Uriarte, L., Gandía, L.M., 2017. Application of eco-design and life cycle assessment standards for environmental impact reduction of an industrial product. Sustain 9. https://doi.org/10.3390/su9101724.spa
dcterms.referencesOchoa, G.V., Isaza-Roldan, C., Forero, J.D., 2019a. A phenomenological base semiphysical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 5, e02700. https://doi.org/10.1016/j.heliyon.2019.e02700.spa
dcterms.referencesOchoa, G.V., Penaloza, C.A., Rojas, J.P., 2019b. Thermoeconomic modelling and ~ parametric study of a simple orc for the recovery ofwaste heat in a 2 MW gas engine under different working fluids. Appl. Sci. 9 https://doi.org/10.3390/ app9214526.spa
dcterms.referencesPeris, B., Navarro-Esbrí, J., Moles, F., 2013. Bottoming organic Rankine cycle con- figurations to increase Internal Combustion Engines power output from cooling water waste heat recovery. Appl. Therm. Eng. 61, 364e371. https://doi.org/ 10.1016/J.APPLTHERMALENG.2013.08.016.spa
dcterms.referencesPetrakopoulou, F., Tsatsaronis, G., Morosuk, T., Carassai, A., 2012. Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy 41, 146e152. https://doi.org/10.1016/j.energy.2011.05.028.spa
dcterms.referencesQuoilin, S., Broek, M. Van Den, Declaye, S., Dewallef, P., Lemort, V., 2013. Technoeconomic survey of organic rankine cycle (ORC) systems. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2013.01.028.spa
dcterms.referencesRamírez, R., Gutierrez, A.S., Cabello Eras, J.J., Valencia, K., Hern andez, B., Duarte Forero, J., 2019. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 241, 118412. https://doi.org/10.1016/ j.jclepro.2019.118412.spa
dcterms.referencesSaadatfar, B., Fakhrai, R., Fransson, T., 2014. Exergo-environmental analysis of nano fluid ORC low-grade waste heat recovery for hybrid trigeneration system. Energy Procedia 61, 1879e1882. https://doi.org/10.1016/j.egypro.2014.12.233.spa
dcterms.referencesShirazi, A., Najafi, B., Aminyavari, M., Rinaldi, F., Taylor, R., 2014. Thermaleeconomiceenvironmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling. Energy 69. https://doi.org/10.1016/j.energy.2014.02.071.spa
dcterms.referencesSun, Z., Liu, C., Xu, X., Li, Q., Wang, X., Wang, S., Chen, X., 2019. Comparative carbon and water footprint analysis and optimization of Organic Rankine Cycle. Appl. Therm. Eng. 158, 113769. https://doi.org/10.1016/j.applthermaleng.2019.113769.spa
dcterms.referencesTchanche, B., Lambrinos, G., Frangoudakis, A., Papadakis, G., 2011. Low-grade heat conversion into power using organic Rankine cycles-A review of various applications. Renew. Sustain. Energy Rev. 15, 3963e3979. https://doi.org/10.1016/ j.rser.2011.07.024.spa
dcterms.referencesTsatsaronis, G., Morosuk, T., 2010. Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas. Energy 35, 820e829. https://doi.org/10.1016/J.ENERGY.2009.08.019.spa
dcterms.referencesTsatsaronis, G., Park, M.-H., 2002. On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Convers. Manag. 43, 1259e1270. https://doi.org/10.1016/S0196-8904(02)00012-2.spa
dcterms.referencesValencia, G., Benavides, A., Cardenas Escorcia, Y., 2019a. Economic and environmental multiobjective optimization of a windesolarefuel cell hybrid energy system in the Colombian caribbean region. Energies 12, 2119. https://doi.org/ 10.3390/en12112119.spa
dcterms.referencesValencia, G., Duarte, J., Isaza-Roldan, C., 2019b. Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC. Appl. Sci. https://doi.org/10.3390/app9194017.spa
dcterms.referencesValencia, G., Fontalvo, A., Cardenas Escorcia, Y., Duarte, J., Isaza-Roldan, C., 2019c. Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC. Energies 12, 2378. https://doi.org/10.3390/ en12122378.spa
dcterms.referencesValencia Ochoa, G., C ardenas Gutierrez, J., Duarte Forero, J., 2020. Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine. Resour. https://doi.org/10.3390/resources9010002.spa
dcterms.referencesWang, X., Dai, Y., 2016. An exergoeconomic assessment of waste heat recovery from a Gas Turbine-Modular Helium Reactor using two transcritical CO2 cycles. Energy Convers. Manag. 126, 561e572. https://doi.org/10.1016/ j.enconman.2016.08.049spa
dcterms.referencesWang, Zhiwen, Xiong, W., Ting, D.S.-K., Carriveau, R., Wang, Zuwen, 2016. Conventional and advanced exergy analyses of an underwater compressed air energy storage system. Appl. Energy 180, 810e822. https://doi.org/10.1016/ J.APENERGY.2016.08.014.spa
dcterms.referencesYang, Q., Qian, Y., Kraslawski, A., Zhou, H., Yang, S., 2016. Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process. Energy 109, 62e76. https://doi.org/10.1016/j.energy.2016.04.076.spa
dcterms.referencesYürüsoy, M., Keçebas¸ , A., 2017. Advanced exergo-environmental analyses and assessments of a real district heating system with geothermal energy. Appl. Therm. Eng. 113, 449e459. https://doi.org/10.1016/ j.applthermaleng.2016.11.054.spa
dcterms.referencesZare, V., 2015. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Convers. Manag. 105, 127e138. https://doi.org/10.1016/j.enconman.2015.07.073.spa
dcterms.referencesZhao, M., Shu, G., Tian, H., Yan, F., Huang, G., Hu, C., 2017. The investigation of the Recuperative Organic Rankine Cycle models for the waste heat recovery on vehicles. Energy Procedia 129, 732e739. https://doi.org/10.1016/ j.egypro.2017.09.106.spa
dc.identifier.doihttps://doi.org/10.1016/j.jclepro.2020.122838
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol.274 (2020)spa
dc.relation.citationendpage20spa
dc.relation.citationissue(2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume274spa
dc.relation.citesOchoa, G. V., Prada, G., & Duarte-Forero, J. (2020). Carbon footprint analysis and advanced exergo-environmental modeling of a waste heat recovery system based on a recuperative organic Rankine cycle. Journal of Cleaner Production, 274, 122838.
dc.relation.ispartofjournalJournal of Cleaner Productionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalAdvanced exergo-environmental analysiseng
dc.subject.proposalInternal combustion engineeng
dc.subject.proposalLCA assessmenteng
dc.subject.proposalRORCeng
dc.subject.proposalWaste heat recovery systemeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record