dc.contributor.author | Prada Botia, Gaudy Carolina | |
dc.contributor.author | Valencia Ochoa, Guillermo | |
dc.contributor.author | Duarte Forero, Jorge | |
dc.date.accessioned | 2021-11-17T00:28:01Z | |
dc.date.available | 2021-11-17T00:28:01Z | |
dc.date.issued | 2020-07-17 | |
dc.identifier.issn | 0959-6526 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1034 | |
dc.description.abstract | The excessive and irrational use of non-renewable energy is the consequence of the interaction of economic growth and environmental pollution. Therefore, it is increasingly necessary to propose energy and environmental improvements in the energy conversion systems according to sustainable development goals, especially in internal combustion engines. The exergetic analyses are a great tool because they allow identifying the components of greater irreversibilities. However, sustainable continuous improvement and opportunities can be found only by means of its advanced development. The study showed that in the waste heat recovery of a 2 MW gas engine based on the recuperative organic Rankine cycle (RORC) using R123 as working fluid, much of the exergy destroyed was endogenous 105.08 kW (81.6%). Steel, copper and aluminum were the proposed materials for the construction of the components, and through a life cycle analysis, it was found that the significant environmental impacts were found in the turbine for the aluminum with a value of 27617.21 kg of CO2 equivalent. Through the carbon footprint and advanced exergo-environmental analysis, it was found that the heat exchanger 1 is the equipment with the largest endogenous exergy destruction opportunities for improvement, also is the heat exchanger device with the most significant rate of environmental impacts, and the recommended material to use in the construction phase of the life-time of the system is the aluminum. | eng |
dc.format.extent | 20 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Journal of Cleaner Production | spa |
dc.relation.ispartof | Journal of Cleaner Production | |
dc.rights | © 2020 Elsevier Ltd. All rights reserved. | eng |
dc.source | https://www.sciencedirect.com/science/article/abs/pii/S0959652620328833?via%3Dihub#! | spa |
dc.title | Carbon footprint analysis and advanced exergo-environmental modeling of a waste heat recovery system based on a recuperative organic Rankine cycle | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Ahmadi, P., Dincer, I., Rosen, M.A., 2012. Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration. Energy Convers. Manag. 64, 447e453. https://doi.org/10.1016/J.ENCONMAN.2012.06.001. | spa |
dcterms.references | Apostol, V., Pop, H., Dobrovicescu, A., Prisecaru, T., Alexandru, A., Prisecaru, M., 2015. Thermodynamic analysis of ORC configurations used for WHR from a turbocharged diesel engine. Procedia Eng. 100, 549e558. https://doi.org/ 10.1016/j.proeng.2015.01.402. | spa |
dcterms.references | Ayadi, A., Zanni-Merk, C., de Beuvron, F. de B., Krichen, S., 2018. A multi-objective method for optimizing the transittability of complex biomolecular networks. Procedia Comput. Sci. 126, 507e516. https://doi.org/10.1016/j.procs.2018.07.285. | spa |
dcterms.references | Bai, T., Yu, J., Yan, G., 2016. Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector. Energy 113, 385e398. https://doi.org/10.1016/ J.ENERGY.2016.07.048. | spa |
dcterms.references | Bari, S., Hossain, S.N., 2013. Waste heat recovery from a diesel engine using shell and tube heat exchanger. Appl. Therm. Eng. 61, 355e363. https://doi.org/ 10.1016/J.APPLTHERMALENG.2013.08.020. | spa |
dcterms.references | Bhering Trindade, A., Carlos Escobar Palacio, J., Martínez Gonzalez, A., Rúa- Orozco, D., Lora, E., Luiza Grillo Reno, M., Almaz an del Olmo, O., 2018. Advanced Exergy Analysis and Environmental Assesment of the Steam Cycle of an Incineration System of Municipal Solid Waste with Energy Recovery. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2017.11.083 | spa |
dcterms.references | Boyano, A., Morosuk, T., Blanco-Marigorta, A.M., Tsatsaronis, G., 2012. Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production. J. Clean. Prod. 20, 152e160. https://doi.org/ 10.1016/j.jclepro.2011.07.027. | spa |
dcterms.references | Chen, S.-J., Hwang, C.-L., 1992. In: Chen, S.-J., Hwang, C.-L. (Eds.), Fuzzy Multiple Attribute Decision Making Methods BT - Fuzzy Multiple Attribute Decision Making: Methods and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 289e486. https://doi.org/10.1007/978-3-642-46768-4_5. | spa |
dcterms.references | Diaz, G.A., Forero, J.D., Garcia, J., Rincon, A., Fontalvo, A., Bula, A., Padilla, R.V., 2017. Maximum power from fluid flow by applying the first and second laws of thermodynamics. J. Energy Resour. Technol.139(3) 032903. https://doi.org/ 10.1115/1.4035021. | spa |
dcterms.references | Ding, Y., Liu, C., Zhang, C., Xu, X., Li, Q., Mao, L., 2018. Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid. Energy 145, 52e64. https://doi.org/10.1016/j.energy.2017.12.123. | spa |
dcterms.references | Doroti c, H., Puksec, T., Dui c, N., 2019. Economical, environmental and exergetic multi-objective optimization of district heating systems on hourly level for a whole year. Appl. Energy 251, 113394. https://doi.org/10.1016/ j.apenergy.2019.113394 | spa |
dcterms.references | El-Emam, R.S., Dincer, I., 2013. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 59, 435e444. https://doi.org/10.1016/j.applthermaleng.2013.06.005. | spa |
dcterms.references | Etghani, M.M., Shojaeefard, M.H., Khalkhali, A., Akbari, M., 2013. A hybrid method of modified NSGA-II and TOPSIS to optimize performance and emissions of a diesel engine using biodiesel. Appl. Therm. Eng. 59, 309e315. https://doi.org/ 10.1016/j.applthermaleng.2013.05.041. | spa |
dcterms.references | Feng, Y.Q., Hung, T.C., Wu, S.L., Lin, C.H., Li, B.X., Huang, K.C., Qin, J., 2017. Operation characteristic of a R123-based organic Rankine cycle depending on working fluid mass flow rates and heat source temperatures. Energy Convers. Manag. 131, 55e68. https://doi.org/10.1016/j.enconman.2016.11.004. | spa |
dcterms.references | Huang, J., Sheer, T.J., Bailey-Mcewan, M., 2012. Heat transfer and pressure drop in plate heat exchanger refrigerant evaporators. Int. J. Refrig. 35, 325e335. https:// doi.org/10.1016/j.ijrefrig.2011.11.002. | spa |
dcterms.references | Imran, M., Pambudi, N.A., Farooq, M., 2017. Thermal and hydraulic optimization of plate heat exchanger using multi objective genetic algorithm. Case Stud. Therm. Eng. 10, 570e578. https://doi.org/10.1016/j.csite.2017.10.003. | spa |
dcterms.references | Imran, M., Usman, M., Park, B.-S., Kim, H.-J., Lee, D.-H., 2015. Multi-objective optimization of evaporator of organic Rankine cycle (ORC) for low temperature geothermal heat source. Appl. Therm. Eng. 80, 1e9. https://doi.org/10.1016/ j.applthermaleng.2015.01.034. | spa |
dcterms.references | Jouhara, H., Sayegh, M.A., 2018. Energy efficient thermal systems and processes. Therm. Sci. Eng. Prog. 7, 1e5. https://doi.org/10.1016/j.tsep.2018.07.016. | spa |
dcterms.references | Kelly, S., Morozyuk, T., 2006. Endogenous and Exogenous Exergy Destruction in Thermal Systems. https://doi.org/10.1115/IMECE2006-13675. | spa |
dcterms.references | Kelly, S., Tsatsaronis, G., Morosuk, T., 2009. Advanced exergetic analysis: approaches for splitting the exergy destruction into endogenous and exogenous parts. Energy 34, 384e391. https://doi.org/10.1016/j.energy.2008.12.007. | spa |
dcterms.references | Kolsch, B., Radulovic, J., 2015. Utilisation of diesel engine waste heat by Organic € Rankine Cycle. Appl. Therm. Eng. 78, 437e448. https://doi.org/10.1016/ j.applthermaleng.2015.01.004. | spa |
dcterms.references | Lecompte, S., Huisseune, H., Van Den Broek, M., Vanslambrouck, B., De Paepe, M., 2015. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2015.03.089. | spa |
dcterms.references | Lecompte, S., Oyewunmi, O., Markides, C., Lazova, M., Kaya, A., den Broek, M., De Paepe, M., 2017. Case study of an organic rankine cycle (ORC) for waste heat recovery from an electric arc furnace (EAF). Energies 10, 649. | spa |
dcterms.references | Li, X., Zhou, H., Wang, Y., Qian, Y., Yang, S., 2015. Thermoeconomic analysis of oil shale retorting processes with gas or solid heat carrier. Energy 87, 605e614. https://doi.org/10.1016/J.ENERGY.2015.05.045. | spa |
dcterms.references | Michos, C.N., Lion, S., Vlaskos, I., Taccani, R., 2017. Analysis of the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged heavy duty diesel power generator for marine applications. Energy Convers. Manag. 132, 347e360. https://doi.org/10.1016/j.enconman.2016.11.025. | spa |
dcterms.references | Montazerinejad, H., Ahmadi, P., Montazerinejad, Z., 2019. Advanced exergy, exergoeconomic and exrgo-environmental analyses of a solar based trigeneration energy system. Appl. Therm. Eng. 152, 666e685. https://doi.org/10.1016/ j.applthermaleng.2019.01.040. | spa |
dcterms.references | Morozyuk, T., Tsatsaronis, G., 2013. Strengths and Limitations of Advanced Exergetic Analyses, en: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). https://doi.org/10.1115/IMECE2013-64320. | spa |
dcterms.references | Nami, H., Anvari-Moghaddam, A., 2020. Small-scale CCHP systems for waste heat recovery from cement plants: thermodynamic, sustainability and economic implications. Energy. https://doi.org/10.1016/j.energy.2019.116634. Elsevier Ltd. | spa |
dcterms.references | Navajas, A., Uriarte, L., Gandía, L.M., 2017. Application of eco-design and life cycle assessment standards for environmental impact reduction of an industrial product. Sustain 9. https://doi.org/10.3390/su9101724. | spa |
dcterms.references | Ochoa, G.V., Isaza-Roldan, C., Forero, J.D., 2019a. A phenomenological base semiphysical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 5, e02700. https://doi.org/10.1016/j.heliyon.2019.e02700. | spa |
dcterms.references | Ochoa, G.V., Penaloza, C.A., Rojas, J.P., 2019b. Thermoeconomic modelling and ~ parametric study of a simple orc for the recovery ofwaste heat in a 2 MW gas engine under different working fluids. Appl. Sci. 9 https://doi.org/10.3390/ app9214526. | spa |
dcterms.references | Peris, B., Navarro-Esbrí, J., Moles, F., 2013. Bottoming organic Rankine cycle con- figurations to increase Internal Combustion Engines power output from cooling water waste heat recovery. Appl. Therm. Eng. 61, 364e371. https://doi.org/ 10.1016/J.APPLTHERMALENG.2013.08.016. | spa |
dcterms.references | Petrakopoulou, F., Tsatsaronis, G., Morosuk, T., Carassai, A., 2012. Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy 41, 146e152. https://doi.org/10.1016/j.energy.2011.05.028. | spa |
dcterms.references | Quoilin, S., Broek, M. Van Den, Declaye, S., Dewallef, P., Lemort, V., 2013. Technoeconomic survey of organic rankine cycle (ORC) systems. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2013.01.028. | spa |
dcterms.references | Ramírez, R., Gutierrez, A.S., Cabello Eras, J.J., Valencia, K., Hern andez, B., Duarte Forero, J., 2019. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 241, 118412. https://doi.org/10.1016/ j.jclepro.2019.118412. | spa |
dcterms.references | Saadatfar, B., Fakhrai, R., Fransson, T., 2014. Exergo-environmental analysis of nano fluid ORC low-grade waste heat recovery for hybrid trigeneration system. Energy Procedia 61, 1879e1882. https://doi.org/10.1016/j.egypro.2014.12.233. | spa |
dcterms.references | Shirazi, A., Najafi, B., Aminyavari, M., Rinaldi, F., Taylor, R., 2014. Thermaleeconomiceenvironmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling. Energy 69. https://doi.org/10.1016/j.energy.2014.02.071. | spa |
dcterms.references | Sun, Z., Liu, C., Xu, X., Li, Q., Wang, X., Wang, S., Chen, X., 2019. Comparative carbon and water footprint analysis and optimization of Organic Rankine Cycle. Appl. Therm. Eng. 158, 113769. https://doi.org/10.1016/j.applthermaleng.2019.113769. | spa |
dcterms.references | Tchanche, B., Lambrinos, G., Frangoudakis, A., Papadakis, G., 2011. Low-grade heat conversion into power using organic Rankine cycles-A review of various applications. Renew. Sustain. Energy Rev. 15, 3963e3979. https://doi.org/10.1016/ j.rser.2011.07.024. | spa |
dcterms.references | Tsatsaronis, G., Morosuk, T., 2010. Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas. Energy 35, 820e829. https://doi.org/10.1016/J.ENERGY.2009.08.019. | spa |
dcterms.references | Tsatsaronis, G., Park, M.-H., 2002. On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Convers. Manag. 43, 1259e1270. https://doi.org/10.1016/S0196-8904(02)00012-2. | spa |
dcterms.references | Valencia, G., Benavides, A., Cardenas Escorcia, Y., 2019a. Economic and environmental multiobjective optimization of a windesolarefuel cell hybrid energy system in the Colombian caribbean region. Energies 12, 2119. https://doi.org/ 10.3390/en12112119. | spa |
dcterms.references | Valencia, G., Duarte, J., Isaza-Roldan, C., 2019b. Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC. Appl. Sci. https://doi.org/10.3390/app9194017. | spa |
dcterms.references | Valencia, G., Fontalvo, A., Cardenas Escorcia, Y., Duarte, J., Isaza-Roldan, C., 2019c. Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC. Energies 12, 2378. https://doi.org/10.3390/ en12122378. | spa |
dcterms.references | Valencia Ochoa, G., C ardenas Gutierrez, J., Duarte Forero, J., 2020. Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine. Resour. https://doi.org/10.3390/resources9010002. | spa |
dcterms.references | Wang, X., Dai, Y., 2016. An exergoeconomic assessment of waste heat recovery from a Gas Turbine-Modular Helium Reactor using two transcritical CO2 cycles. Energy Convers. Manag. 126, 561e572. https://doi.org/10.1016/ j.enconman.2016.08.049 | spa |
dcterms.references | Wang, Zhiwen, Xiong, W., Ting, D.S.-K., Carriveau, R., Wang, Zuwen, 2016. Conventional and advanced exergy analyses of an underwater compressed air energy storage system. Appl. Energy 180, 810e822. https://doi.org/10.1016/ J.APENERGY.2016.08.014. | spa |
dcterms.references | Yang, Q., Qian, Y., Kraslawski, A., Zhou, H., Yang, S., 2016. Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process. Energy 109, 62e76. https://doi.org/10.1016/j.energy.2016.04.076. | spa |
dcterms.references | Yürüsoy, M., Keçebas¸ , A., 2017. Advanced exergo-environmental analyses and assessments of a real district heating system with geothermal energy. Appl. Therm. Eng. 113, 449e459. https://doi.org/10.1016/ j.applthermaleng.2016.11.054. | spa |
dcterms.references | Zare, V., 2015. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Convers. Manag. 105, 127e138. https://doi.org/10.1016/j.enconman.2015.07.073. | spa |
dcterms.references | Zhao, M., Shu, G., Tian, H., Yan, F., Huang, G., Hu, C., 2017. The investigation of the Recuperative Organic Rankine Cycle models for the waste heat recovery on vehicles. Energy Procedia 129, 732e739. https://doi.org/10.1016/ j.egypro.2017.09.106. | spa |
dc.identifier.doi | https://doi.org/10.1016/j.jclepro.2020.122838 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol.274 (2020) | spa |
dc.relation.citationendpage | 20 | spa |
dc.relation.citationissue | (2020) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 274 | spa |
dc.relation.cites | Ochoa, G. V., Prada, G., & Duarte-Forero, J. (2020). Carbon footprint analysis and advanced exergo-environmental modeling of a waste heat recovery system based on a recuperative organic Rankine cycle. Journal of Cleaner Production, 274, 122838. | |
dc.relation.ispartofjournal | Journal of Cleaner Production | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | Advanced exergo-environmental analysis | eng |
dc.subject.proposal | Internal combustion engine | eng |
dc.subject.proposal | LCA assessment | eng |
dc.subject.proposal | RORC | eng |
dc.subject.proposal | Waste heat recovery system | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |