Mostrar el registro sencillo del ítem

dc.contributor.authorLopez, Betty
dc.contributor.authorMurillo, Edwin A.
dc.date.accessioned2021-11-16T21:28:59Z
dc.date.available2021-11-16T21:28:59Z
dc.date.issued2016-12-08
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1023
dc.description.abstractFour waterborne hyperbranched alkyd-acrylic resins (HBRAA) were synthesized by miniemulsion polymerization from a hyperbranched alkyd resin (HBR), methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA), by using benzoyl peroxide (BPO) and ammonium persulfate (AP) as initiators. The reaction between HBR and acrylic monomers was evidenced by differential scanning calorimetric (DSC), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The conversion percentage, glass transition temperature (Tg), content of acrylic polymer (determined by soxhlet extraction) and molecular weight increased with the content of acrylic monomers used in the synthesis. The main structure formed during the synthesis was the HBRAA. The analysis by dynamic light scattering (DLS) showed that the particle size distribution of HBRAA2, HBRAA3 and HBRAA4 resins were mainly monomodal. The film properties (gloss, flexibility, adhesion and drying time) of the HBRAA were good.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherPolimerosspa
dc.relation.ispartofPolímeros
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.eng
dc.sourcehttps://www.scielo.br/j/po/a/vGckBF5gxTKCBxtTKzhrVSB/?format=htmlspa
dc.titleWaterborne hyperbranched alkyd-acrylic resin obtained by miniemulsion polymerizationeng
dc.typeArtículo de revistaspa
dcterms.referencesBat, E., Gunduz, G., Kisakurek, D., & Akhmedov, I. M. (2006). Synthesis and characterization of hyperbranched and air drying fatty acid based resins. Progress in Organic Coatings, 55(4), 330-336. http://dx.doi.org/10.1016/j.porgcoat.2006.01.005spa
dcterms.referencesNabuurs, T., Baijards, R. A., & German, A. L. (1996). Alkyd-acrylic hybrid systems for use as binders in waterborne paints. Progress in Organic Coatings, 27(1-4), 163-172. http://dx.doi.org/10.1016/0300-9440(95)00533-1spa
dcterms.referencesMurillo, E. A., Vallejo, P. P., & López, B. L. (2010). Synthesis and characterization of hyperbranched alkyd resins based on tall oil fatty acids. Progress in Organic Coatings, 69(3), 235-240. http://dx.doi.org/10.1016/j.porgcoat.2010.04.018spa
dcterms.referencesSaravari, O., Phapant, P., & Pimpan, V. (2005). Synthesis of water-reducible acrylic–alkyd resins based on modified palm oil. Journal of Applied Polymer Science, 96(4), 1170-1175. http://dx.doi.org/10.1002/app.21009spa
dcterms.referencesMurillo, E. A., López, B. L., & Brostow, W. (2012). Thermal, hydrolytic, anticorrosive, and tribological properties of alkyd-silicone hyperbranched resins with high solid content. Journal of Applied Polymer Science, 124(5), 3591-3599. http://dx.doi.org/10.1002/app.34611spa
dcterms.referencesMurillo, E. A., & López, B. L. (2011). Novel waterborne hyperbranched acrylated-maleinized alkyd resins. Progress in Organic Coatings, 72(4), 731-738. http://dx.doi.org/10.1016/j.porgcoat.2011.08.004spa
dcterms.referencesGuyot, A., Landfester, K., Schork, F. J., & Wang, Ch. (2007). Hybrid polymer latexes. Progress in Polymer Science, 32(12), 1439-1461. http://dx.doi.org/10.1016/j.progpolymsci.2007.07.003spa
dcterms.referencesMurillo, E. A., López, B. L., & Brostow, W. (2011). Synthesis and characterization of novel alkyd–silicone hyperbranched nanoresins with high solid contents. Progress in Organic Coatings, 72(3), 292-298. http://dx.doi.org/10.1016/j.porgcoat.2011.04.019spa
dcterms.referencesMurillo, E. A., López, B. L., & Hess, M. (2004). Synthesis and characterization of a pressure-sensitive adhesive based on an isobutyl acrylate / 2-ethylhexyl acrylate copolymer. e-polymer, 28, 1-10. http://dx.doi.org/10.1515/epoly.2004.4.1.288.spa
dcterms.referencesWang, C., Chu, F., Graillat, C., Guyot, A., Gauthier, C., & Chapel, J. P. (2005). Hybrid polymer latexes: acrylics–polyurethane from miniemulsion polymerization: properties of hybrid latexes versus blends. Polymer, 46(4), 1113-1124. http://dx.doi.org/10.1016/j.polymer.2004.11.051spa
dcterms.referencesMurillo, E. A., & López, B. L. (2006). Study of the impact resistance of physically and dynamically vulcanized mixtures of PP/EPDM. Macromolecular Symposia, 242(1), 131-139. http://dx.doi.org/10.1002/masy.200651020spa
dcterms.referencesSilber, S., Reuter, E., Stüttgen, A., & Albrecht, G. (2002). New concepts for the synthesis of wetting and dispersing additives for water-based systems. Progress in Organic Coatings, 45(2-3), 259-266. http://dx.doi.org/10.1016/S0300-9440(02)00064-4spa
dcterms.referencesTsavalas, J., Luo, Y., Hudda, L., & Schork, F. (2003). Limiting conversion phenomenon in hybrid miniemulsion polymerization. Polymer Reaction Engineering, 11(3), 277-304. http://dx.doi.org/10.1081/PRE-120023904spa
dcterms.referencesTsavalas, J., Gooch, J., & Schork, F. J. (2000). Water-based crosslinkable coatings via miniemulsion polymerization of acrylic monomers in the presence of unsaturated polyester resin. Journal of Applied Polymer Science, 75(7), 916-927. http://dx.doi.org/10.1002/(SICI)1097-4628(20000214)75:7<916spa
dcterms.referencesVan Hamersveld, E. M. S., Van Es, G. S., German, A., Cuperus, F., Weissenborn, P., & Hellgren, A. (1999). Oil-acrylic hybrid latexes as binders for waterborne coatings. Progress in Organic Coatings, 35(1-4), 235-246. http://dx.doi.org/10.1016/S0300-9440(99)00040-5spa
dcterms.referencesLindeboom, J. (1998). Air-drying high solids alkyd pants for decorative coatings. Progress in Organic Coatings, 34(1-4), 147-151. http://dx.doi.org/10.1016/S0300-9440(98)00034-4spa
dcterms.referencesWu, X., Schork, F., & Gooch, J. (1999). Hybrid miniemulsion polymerization of acrylic/alkyd systems and characterization of the resulting polymers. Journal of Polymer Science. Part A, Polymer Chemistry, 37(22), 4159-4168. http://dx.doi.org/10.1002/(SICI)1099-0518(19991115)37:22<4159spa
dcterms.referencesHudda, L., Tsavalas, J. G., & Schork, F. J. (2005). Simulation studies on the origin of the limiting conversion phenomenon in hybrid miniemulsion polymerization. Polymer, 46(4), 993-1001. http://dx.doi.org/10.1016/j.polymer.2004.11.035spa
dcterms.referencesWang, Q., Fu, S., & Yu, T. (1994). Emulsion polymerization. Progress in Polymer Science, 19(4), 703-753. http://dx.doi.org/10.1016/0079-6700(94)90031-0spa
dcterms.referencesJowkar-Deriss, M., & Karlsson, O. J. (2004). Morphologies and droplet sizes of alkyd–acrylic hybrids with high solids content. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 245(1-3), 115-125. http://dx.doi.org/10.1016/j.colsurfa.2004.07.003spa
dcterms.referencesQuintero, C., Mendon, S. K., Smith, O. W., & Thames, S. F. (2006). Miniemulsion polymerization of vegetable oil macromonomers. Progress in Organic Coatings, 57(3), 195-201. http://dx.doi.org/10.1016/j.porgcoat.2006.08.011spa
dcterms.referencesHeiskanen, N., Jämsä, S., Paajanen, L., & Koskimies, S. (2010). Synthesis and performance of alkyd-acrylic hybrid binders. Progress in Organic Coatings, 67(3), 329-338. http://dx.doi.org/10.1016/j.porgcoat.2009.10.025spa
dcterms.referencesDziczkowski, J., Dudipala, V., & Soucek, M. D. (2012). Grafting sites of acrylic mixed monomers onto unsaturated fatty acids: Part 2. Progress in Organic Coatings, 73(4), 308-320. http://dx.doi.org/10.1016/j.porgcoat.2010.12.006spa
dcterms.referencesDziczkowski, J., Chatterjee, U., & Soucek, M. D. (2012). Route to co-acrylic modified alkyd resins via a controlled polymerization technique. Progress in Organic Coatings, 73(4), 355-365. http://dx.doi.org/10.1016/j.porgcoat.2011.03.003spa
dcterms.referencesElrebii, M., Mabrouk, A. B., & Boufi, S. (2014). Synthesis and properties of hybrid alkyd–acrylic dispersions and their use in VOC-free waterborne coatings. Progress in Organic Coatings, 77(4), 757-764. http://dx.doi.org/10.1016/j.porgcoat.2013.12.016spa
dcterms.referencesTsavalas, J. G., Luo, Y., & Schork, F. J. (2003). Grafting mechanisms in hybrid miniemulsion polymerization. Journal of Applied Polymer Science, 87(11), 1825-1836. http://dx.doi.org/10.1002/app.11916spa
dcterms.referencesMurillo, E. A., Vallejo, P. P., & López, B. L. (2011). Effect of tall oil fatty acids content on the properties of novel hyperbranched alkyd resins. Journal of Applied Polymer Science, 120(6), 3151-3158. http://dx.doi.org/10.1002/app.33502spa
dcterms.referencesWang, S. T., Schork, F. J., Poehlein, G. W., & Gooch, J. W. (1996). Emulsion and miniemulsion copolymerization of acrylic monomers in the presence of alkyd resin. Journal of Applied Polymer Science, 60(12), 2069-2076. http://dx.doi.org/10.1002/(SICI)1097-4628(19960620)60:12<2069spa
dcterms.referencesSchork, F. J., Luo, Y., Smulders, W., Russum, J. P., Butte, A., & Fontenot, K. (2005). Miniemulsion Polymerization. Advances in Polymer Science, 175, 129-255. http://dx.doi.org/10.1007/b100115spa
dcterms.referencesLandfester, K., Schork, F. J., & Kusuma, V. A. (2003). Particle size distribution in mini-emulsion polymerization. Comptes Rendus. Chimie, 6(11-12), 1337-1342. http://dx.doi.org/10.1016/j.crci.2003.07.019spa
dcterms.referencesMerkel, M. P., Dimonie, V. L., El-Aasser, M. S., & Vanderhoff, J. W. (1987). Process parameters and their effect on grafting reactions in core/shell latexes. Journal of Polymer Science. Part A, Polymer Chemistry, 25(7), 1755-1767. http://dx.doi.org/10.1002/pola.1987.080250705spa
dcterms.referencesMatsumoto, A., Kodama, K., Aota, H., & Capek, I. (1999). Kinetics of emulsion crosslinking polymerization and copolymerization of allyl methacrylate. European Polymer Journal, 35(8), 1509-1517. http://dx.doi.org/10.1016/S0014-3057(98)00216-Xspa
dcterms.referencesEsser, R. J., Devona, J. E., Setzke, D. E., & Wagemans, L. (1999). Water based crosslinkable surface coatings. Progress in Organic Coatings, 36(1-2), 45-52. http://dx.doi.org/10.1016/S0300-9440(99)00019-3spa
dcterms.referencesKin, H., Hayashi, S., & Mizumachi, H. (1998). Miscibility and fracture energy of probe tack for acrylic pressure-sensitive adhesives: acrylic copolymer/tackifier resin systems. Journal of Applied Polymer Science, 69(3), 581-587. http://dx.doi.org/10.1002/(SICI)1097-4628(19980718)69:3<581spa
dc.identifier.doihttps://doi.org/10.1590/0104-1428.2344
dc.publisher.placeBrasilia , Brasilspa
dc.relation.citationeditionVol.26 No.4.(2016)spa
dc.relation.citationendpage351spa
dc.relation.citationissue4 (2016)spa
dc.relation.citationstartpage343spa
dc.relation.citationvolume26spa
dc.relation.citesMurillo, E., & López, B. (2016). Waterborne hyperbranched alkyd-acrylic resin obtained by miniemulsion polymerization. Polímeros, 26, 343-351.
dc.relation.ispartofjournalPolímerosspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalhyperbranched polymerseng
dc.subject.proposalminiemulsion polymerizationeng
dc.subject.proposalalkyd-acrylic resinseng
dc.subject.proposalpropertieseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem