Mostrar el registro sencillo del ítem

dc.contributor.authorMurillo, Edwin A.
dc.contributor.authorGuzman, Manuel
dc.date.accessioned2021-11-16T19:13:26Z
dc.date.available2021-11-16T19:13:26Z
dc.date.issued2018-07-01
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1013
dc.description.abstractIn this work, the effect of the proportion of a hyperbranched polyester polyol (HBP) of fourth generation on the structural, thermal, rheological, morphological and mechanical properties of tapioca starch/HBP blends (TPS) was evaluated. For this purpose, the ratios of starch:HBP employed to prepare the TPS were: 30:70 (TPS30), 40:60 (TPS40) and 50:50 (TPS50). Using infrared (IR) analysis, it was observed that the presence of HBP produced a displacement at the absorptions of the C-OH, C-O and C-O-C bonds of the TPS. The X-ray diffraction (DRX) analysis showed that the starch crystallinity is A and B type, which increased with the HBP amount. The glass transition temperature (Tg) of the TPS, increased with the HBP content, but the thermal stability and viscosity (at an angular frequency of 1 Hz) presented an opposite behavior. The scanning electronic microscopy analysis (SEM) revealed that the granular structure of the starch was not completely destructured.eng
dc.description.abstractEn este trabajo, se evaluó el efecto de la proporción de un poliéster poliol altamente ramificado (HBP) de cuarta generación en las propiedades estructurales, térmicas, reológicas, morfológicas y mecánicas de mezclas de almidón de yuca/HBP (TPS). Para este propósito las relaciones de almidón:HBP empleadas para preparar los TPS fueron: 30:70 (TPS30), 40:60 (TPS40) and 50:50 (TPS50). Por análisis infrarrojo (IR) se observó que la presencia de HBP produjo un desplazamiento en las absorciones de los enlaces C-OH, C-O and C-O-C del TPS. El análisis de difracción de rayos X mostró que la cristalinidad del almidón es tipo A y B, las cuales incrementaron con la cantidad de HBP. La temperatura de transición vítrea (Tg) de los TPS, incrementó con el contenido de HBP, pero la estabilidad térmica y la viscosidad (a una frecuencia angular de 1 Hz) presentaron un comportamiento opuesto. El análisis de microscopia de barrido electrónica (SEM), reveló que la estructura granular del almidón no fue completamente desestructurada.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista DYNAspa
dc.relation.ispartofRevista DYNA
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.sourcehttps://revistas.unal.edu.co/index.php/dyna/article/view/71819spa
dc.titleStructural, thermal, rheological, morphological and mechanical properties of thermoplastic starch obtained by using hyperbranched polyester polyol as plasticizing agenteng
dc.typeArtículo de revistaspa
dcterms.referencesMa, X.F, Yu, J.G. and Wan, J., Urea and ethanolamine as a mixed plasticizer for thermoplastic starch. Carbohydrate Polymers, 64(2), pp. 267-273, 2006. DOI: 10.1016/j.carbpol.2005.11.042spa
dcterms.referencesVaverková, M., Toman F., Adamcová, D. and Kotovicová, J., Study of the biodegrability of degradable/biodegradable plastic material in a controlled composting environment. Ecological Chemistry and Engineering, 19(3), pp. 347-358, 2012. DOI: 10.2478/v10216-011-0025-8.spa
dcterms.referencesBertolini, A., Starches, characterization, properties and applications. Editorial CRC Press, United States, [online]. 2009, 6 P. Available at: https://books.google.com.co/books/about/Starches.html?id=iv2u5fM2as8C&source=kp_cover&redir_esc=y. DOI: 10.1201/9781420080247spa
dcterms.referencesHuang, M., Yu, J. and Ma, X.F., Ethanolamine as a novel plasticizer for thermoplastic starch. Polymer Degradation Stability, 90(3), pp. 501-507, 2005. DOI: 10.1016/j.polymdegradstab.2005.04.005spa
dcterms.referencesYang, J., Yu, J. and Ma, X., Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (ESPTPS). Carbohydrate Polymers, 66(1), pp. 110-116, 2006. DOI: 10.1016/j.carbpol.2006.02.029spa
dcterms.referencesMesias, R. and Murillo, E., Hyperbranched polyester polyol modified with polylactic acid as a compatibilizer for plasticized tapioca starch/polylactic acid blends. Polímeros, 28(1), pp. 44-52, 2018. DOI: 10.1590/0104-1428.09516spa
dcterms.referencesJanssen, L. and Moscicki, L., Thermoplastic starch. Editorial Wiley, Germany, [online]. 2009, 4 P. Available at: https://books.google.com.co/books?id=nHbLfoCoMvQC&pp=PA218&lpg=PA218&dq=Janssen+L.+and+Moscicki+L.,+%22Thermoplastic+starch%22.&source=bl&ots=sHq0LxS7nk&sig=6tE-Djg QFg8y5A109zj9gy8Q4Q&hl=en&sa=X&ved=0ahUKEwjRmry77MnaAhVQvVMKHaLpDspa
dcterms.referencesMurillo, E.A., Vallejo, P.P. and López, B.L., Characterization of hydroxylated hyperbranched polyesters of fourth and fifth generation. E-Polymer, 10(1), pp.1347-1358, 2010. DOI: 10.1515/epoly.2010.10.1.1347spa
dcterms.referencesMurillo, E.A., Vallejo, P.P., Sierra, L. and López B.L., Characterization of hyperbranched polyol polyesters based on 2,2-bis (methylol Propionic Acid) and pentaerythritol. Journal of Applied Polymer Science, 112(1), pp. 200-207, 2009. DOI: 10.1002/app.29397spa
dcterms.referencesMurillo, E.A., Cardona, A. and López B.L. Rheological behavior in the molten state and solution of hyperbranched polyester of fourth and fifth generation. Journal of Applied Polymer Science, 119(2), pp. 929-935, 2011. DOI: 10.1002/app.32774spa
dcterms.referencesZagar, E. and Zigon, M., Aliphatic hyperbranched polyesters based on 2,2 bis(methylol)propionic acid—Determination of structure, solution and bulk properties. Progress in Polymer Science, 36(1), pp. 53-88, 2011. DOI: 10.1016/j.progpolymsci.2010.08.004spa
dcterms.referencesGuzmán, M. and Murillo, E.A., The properties of blends of maleic anhydride-grafted polyethylene and thermoplastic starch using hyperbranched polyester polyol as a plasticizer. Polymer Engineering and Science, 55(11), pp. 2526-2533, 2015. DOI: 10.1002/pen.24143spa
dcterms.referencesZhang, K., Cheng, X., Cheng, F., Lin, Y., Zhou, M. and Zhu, P., Poly(citrate glyceride): a hyperbranched polyester for starch plasticization. Polymer International, 67(4), pp. 399-404, 2018. DOI: 10.1002/pi.5520spa
dcterms.referencesZhang, K., Cheng, F., Lin, Y., Zhou, M. and Zhu, P., Effect of hyperbranched poly(trimellitic glyceride) with different molecular weight on starch plasticization and compatibility with polyester. Carbohydrate Polymers, 195 (1), pp. 107-113, 2018. DOI: 10.1016/j.carbpol.2018.04.080spa
dcterms.referencesChang, P., Jian, R., Zheng, P., Yu, J. and Ma, X., Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydrate Polymers, 79(2), pp. 301-305, 2010 DOI: 10.1016/j.carbpol.2009.08.007.spa
dcterms.referencesZobel, H.F., Starch crystal transformations and their industrial importance. Starch/Stärke, 40(1), pp. 1-7, 1988. DOI: 10.1002/star.19880400102.spa
dcterms.referencesDa Roz, A.L., Carvalho, A., Gandini, A. and Curvelo, A., The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydrate Polymers, 63(3), pp. 417-424, 2006. DOI: 10.1016/j.carbpol.2005.09.017.spa
dcterms.referencesYoon, S.D., Chough, S.H., and Park, H.R., Properties of starch‐based blend films using citric acid as additive. II. Journal of Applied Polymer Science, 100(3), pp. 2554-2560, 2006. DOI: 10.1002/app.23783.spa
dcterms.referencesMathew, A.P., and Dufresne, A., Plasticized waxy maize starch: effect of polyols and relative humidity on material properties. Biomacromolecules, 3(5), pp. 1101-1108, 2002. DOI: 10.1021/bm020065pspa
dcterms.referencesKaur, L., Singh, J. and Singh N., Effect of glycerol monostearate on the physico-chemical, thermal, rheological and noodle making properties of corn and potato starches. Food Hydrocolloids, 19(5), pp. 839-849, 2005. DOI: 10.1016/j.foodhyd.2004.10.036.spa
dcterms.referencesGuzmán, M., Obtención y caracterización de mezclas de polietileno de baja densidad modificado con anhídrido maleico y almidón termoplástico. Trabajo de Investigación, Universidad de Antioquia, 2013, pp. 56-63.spa
dcterms.referencesCanché, G., Canché, M., Duarte, S., Cáceres, M. and Borges, R., Mechanical properties and biodegradation of thermoplastic starches obtained from grafted starches with acrylics. Carbohydrate Polymers, 86(4), pp. 1501-1508, 2011. DOI: 10.1016/j.carbpol.2011.06.052.spa
dcterms.referencesRao, M. and Tattiyakul, J., Granule size and rheological behavior of heated tapioca starch dispersions. Carbohydrate Polymers, 38(2), pp. 123-132, 1999. DOI: 10.1016/S0144-8617(98)00112-X.spa
dcterms.referencesRodríguez, F.J., Ramsay, B.A. and Favis, B.D., Rheological and thermal properties of thermoplastic starch with high glycerol content. Carbohydrate Polymers, 58(2), pp. 139-147, 2004. DOI: 10.1016/j.carbpol.2004.06.002.spa
dcterms.referencesNagano, T., Tamaki, E. and Funami T., Influence of guar gum on granule morphologies and rheological properties of maize starch. Carbohydrate Polymers, 72(1), pp. 95-101, 2008. DOI: 10.1016/j.carbpol.2007.07.028.spa
dcterms.referencesJagadish, R.S., and Raj, B., Properties and sorption studies of polyethylene oxide-starch blended films. Food Hydrocoloids. 25(6), 1572-1580, 2011. DOI: 10.1016/j.foodhyd.2011.01.009spa
dcterms.referencesBasiak, E., Lenart, A. and Debeaufort, F., How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, 10(4), pp. 412-429, 2018 DOI: 10.3390/polym10040412spa
dc.identifier.doihttps://doi.org/10.15446/dyna.v85n206.71819
dc.publisher.placeBogota ,Colombiaspa
dc.relation.citationeditionVol.85 No.206.(2018)spa
dc.relation.citationendpage186spa
dc.relation.citationissue206 (2018)spa
dc.relation.citationstartpage178spa
dc.relation.citationvolume85spa
dc.relation.citesGuzmán, M., & Murillo, E. A. (2018). Structural, thermal, rheological, morphological and mechanical properties of thermoplastic starch obtained by using hyperbranched polyester polyol as plasticizing agent. DYNA, 85(206), 178-186. https://doi.org/10.15446/dyna.v85n206.71819
dc.relation.ispartofjournalRevista DYNAspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalalmidónspa
dc.subject.proposalpoliéster poliol altamente ramificadospa
dc.subject.proposalTPSspa
dc.subject.proposalplastificación; propiedadesspa
dc.subject.proposalhyperbranched polyester polyoleng
dc.subject.proposalplasticizationeng
dc.subject.proposalpropertieseng
dc.title.translatedPropiedades térmicas, reológicas, morfológicas y mecánicas de almidón termoplástico obtenido usando un poliéster poliol altamente ramificado como agente plastificante
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem