Mostrar el registro sencillo del ítem

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.contributor.advisorMurillo Ruiz, Edwin Alberto
dc.contributor.authorContreras Atuesta, Ingrid Yuliani
dc.date.accessioned2024-06-13T20:44:56Z
dc.date.available2024-06-13T20:44:56Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/7721
dc.description.abstractEn el presente trabajo, fueron preparados materiales compuestos a partir de polipropileno reciclado (PPr) y celulosa de la cascarilla de arroz (Cel) empleando como agente de acoplamiento un polipropileno funcionalizado con un poliéster poliol altamente ramificado maleinizado (PP-g-MHBP). Por otra parte, para evaluar las propiedades estructurales, térmicas, reológicas, morfológicas y mecánicas de los materiales se realizaron los siguientes análisis: infrarrojo, difracción de rayos X, termogravimétrico, calorimetría de barrido diferencial, reológico, microscopia de barrido electrónico, absorción de humedad, absorción de agua y espesor de hinchamiento, índice de fluidez, dureza, resistencia al impacto, tracción y conductividad térmica. La Cel redujo la cristalinidad del PPr, pero el PP-g-MHBP no afectó apreciablemente las fases cristalinas del PPr y la Cel. La cristalinidad, la adhesión interfacial, la resistencia al impacto y la conductividad térmica de las mezclas, incrementaron con el contenido de PP-g-MHBP. Además, el PP-g-MHBP también mejoró la estabilidad térmica y actúo como agente plastificante, y acoplante para las mezclas de PPr/Cel. La mejor interacción entre el PPr y la Cel fue obtenida empleando un 20 % del PP-g-MHBP. Además, el módulo elástico, la fuerza tensil y la elongación a la ruptura no mostraron una dependencia con el contenido de PP-g-MHBP.spa
dc.description.tableofcontents1. INTRODUCCIÓN 1 2. PLANTEAMIENTO DEL PROBLEMA 3 3. JUSTIFICACIÓN 8 4. MARCO REFERENCIAL 12 4.1. ESTADO DEL ARTE 12 4.2. MARCO TEÓRICO 16 4.2.1. PP 16 4.2.2. Funcionalización de las poliolefinas 18 4.2.3. Fibras naturales 20 4.2.4. CA 21 4.2.5. Materiales compuestos de fibras naturales 22 4.2.6. Economía circular 24 4.2.7. Análisis de ciclo de vida (LCA) 27 4.2.8. ANOVA 27 4.3. MARCO CONCEPTUAL 30 4.3.1. Agentes de acoplamiento. 30 4.3.2. Análisis multivariante. 30 4.3.3. Compatibilización. 30 4.3.4. Cradle to Cradle (C2C). 30 4.3.5. Cradle to Grave. 30 4.3.6. Distribución normal. 31 4.3.7. Elongación a la ruptura. 31 4.3.8. Fuerza ténsil. 31 4.3.9. Funcionalización. 31 4.3.10. Hipótesis nula (H0). 32 4.3.11. Hipótesis alternativa (Ha o H1). 32 4.3.12. Hipótesis operacional. 32 4.3.13. Hipótesis estadística. 32 4.3.14. Intersección. 32 4.3.15. Material compuesto. 33 4.3.16. Medias marginales 33 4.3.17. Modelo ANOVA de efectos fijos 33 4.3.18. Modelo ANOVA de efectos aleatorios 33 4.3.19. Modelo corregido 33 4.3.20. Modulo ténsil o tracción 34 4.3.21. Objetivos de desarrollo sostenible 34 4.3.22. Prueba de los efectos inter-sujetos 34 4.3.23. Prueba F 34 4.3.24. Reciclar 35 4.3.25. Relleno 35 4.3.26. Reducir 35 4.3.27. Reutilizar 35 4.3.28. Variable 36 4.3.29. Variable dependiente 36 4.3.30. Variable independiente 36 4.3.31. Variable métrica o cuantitativas 36 4.3.32. Variable no métrica o cualitativas 36 4.3.33. Varianza de error 37 4.4. MARCO LEGAL 37 4.4.1. Legislación internacional 37 4.4.1.1. Convenios internacionales 37 4.4.2. Legislación nacional 39 5. OBJETIVOS 40 5.1. Objetivo General 40 5.2. Objetivos específicos 40 6. METODOLOGÍA 41 6.1. DISEÑO EXPERIMENTAL 41 6.2. PROCEDIMIENTO EXPERIMENTAL 41 6.2.1. Materiales 41 6.2.2. Preparación de los materiales 42 6.2.3. Caracterización de los materiales 45 7. ANALISIS Y DISCUSIÓN DE LOS RESULTADOS 49 7.1. Obtención de la Cel 49 7.2. Análisis granulométrico 49 7.2. Reometría de torque 50 7.3. Análisis IR 52 7.4. DRX 54 7.5. TGA 56 7.6. DSC 60 7.7. Reología 63 7.7.1. Análisis estático 63 7.7.1. Energía de activación 65 7.7.2. Amplitud sweep 68 7.7.3. Análisis oscilatorio 69 7.7.4. Comportamiento de G' y G'' 70 7.7.5. Regla de Cox-Merz 72 7.7.6. Tiempos de relajación 74 7.7.7. Diagrama de Van Gurp-Palmen 75 7.7.8. Diagrama de Cole-Cole 76 7.8. SEM 78 7.9. AH 80 7.10. AbA y el EH 82 7.11. MFI 84 7.12. Dureza 85 7.13. Resistencia al impacto 86 7.14. Tracción 87 7.15. Conductividad térmica 89 7.16. Resultados ANOVA 91 7.16.1. Hipótesis Operacional 91 7.16.2. Hipótesis Estadística 91 7.16.3. Análisis de Resultados 91 7.17. PROTOTIPO 103 8. CONCLUSIONES 107 9. PERSPECTIVAS DEL TRABAJO 108 10. PRODUCCIÓN CIENTÍFICA 109 11. REFERENCIAS 112
dc.formatapplication/pdf
dc.format.extent157 páginas. ilustraciones, (Trabajo completo) 3.843 KB
dc.publisherUniversidad Francisco de Paula Santanderspa
dc.rightsDerechos Reservados - Universidad Francisco de Paula Santander, 2023spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcehttps://catalogobiblioteca.ufps.edu.co/descargas/tesis/TG_1950020.pdf
dc.titleEvaluación de un polipropileno funcionalizado con un poliéster altamente ramificado maleinizado, como agente de acoplamiento para materiales compuestos de polipropileno reciclado y celulosa de la cascarilla de arrozspa
dc.typeTrabajo de grado - Pregrado
dcterms.referencesAcharya, S., & Chaudhary, A. (2012). Bioprospecting thermophiles for cellulase production: A review. Brazilian Journal of Microbiology, 43(3), 844–856. https://doi.org/10.1590/S151783822012000300001
dcterms.referencesAhmad, Z., Roziaizan, N. N., Rahman, R., Mohamad, A. F., & Wan Ismail, W. I. N. (2016). Isolation and characterization of Microcrystalline Cellulose (MCC) from Rice Husk (RH). MATEC Web of Conferences, 47(January). https://doi.org/10.1051/matecconf/20164705013
dcterms.referencesAlqahtani, N., Alejji, M., & Labidi, S. (2021). Influence of Compatibilizers on Date Palm Fiber and High Density Polyethylene Composite. American Journal of Engineering, Science and Technology (AJEST), 10(MARCH 2021), 62–81.
dcterms.referencesArarat, C. A., Quiñonez, W., & Murillo, E. A. (2019). Maleinized Hyperbranched Polyol Polyester: Effect of the Content of Maleic Anhydride in the Structural, Thermal and Rheological Properties. Macromolecular Research, 27(7), 693–702. https://doi.org/10.1007/s13233-0197089-1
dcterms.referencesAriyoshi, S., Hashimoto, S., Ohnishi, S., Negishi, S., Mikami, H., Hayashi, K., Tanaka, S., & Hiroshiba, N. (2021). Broadband terahertz spectroscopy of cellulose nanofiber-reinforced polypropylenes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 265, 115000. https://doi.org/10.1016/j.mseb.2020.115000
dcterms.referencesArjmandi, R., Hassan, A., Majeed, K., & Zakaria, Z. (2015). Rice Husk Filled Polymer Composites. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/501471
dcterms.referencesArjmandi, R., Ismail, A., Hassan, A., & Abu Bakar, A. (2017). Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Construction and Building Materials, 152, 484–493. https://doi.org/10.1016/j.conbuildmat.2017.07.052
dcterms.referencesASTM-D2240. (2017). Standant method for Rubber Property - Durometer Hardness. In Annual Book of ASTM Standarts (p. 13).
dcterms.referencesASTM. (2010). D1238-13 Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. Norma, 08, 1–16. https://doi.org/10.1520/D1238-13.
dcterms.referencesASTM D638. (2014). Standard Test Method for Tensile Properties of Plastics. In ASTM Standards (Vol. 08).
dcterms.referencesBaulch, S., & Perry, C. (2014). Evaluating the impacts of marine debris on cetaceans. Marine Pollution Bulletin, 80(1–2), 210–221. https://doi.org/10.1016/j.marpolbul.2013.12.050
dcterms.referencesBengtsson, M., Baillif, M. Le, & Oksman, K. (2007). Extrusion and mechanical properties of highly filled cellulose fibre-polypropylene composites. Composites Part A: Applied Science and Manufacturing, 38(8), 1922–1931. https://doi.org/10.1016/j.compositesa.2007.03.004
dcterms.referencesBeyer;, D. G., & Hopmann, P. D. C. (2018). Reactive Extrusion: Principles and Applications. In Encyclopedia of Polymer Science and Engineering, Vol. 14.
dcterms.referencesBhattacharyya, D., Subasinghe, A., & Kim, N. K. (2015). Natural fibers: Their composites and flammability characterizations. In Multifunctionality of Polymer Composites: Challenges and New Solutions. Elsevier Inc. https://doi.org/10.1016/B978-0-323-26434-1.00004-0
dcterms.referencesBogataj, V., Fajs, P., Peñalva, C., Omahen, M., Čop, M., & Henttonen, A. (2019). Utilization of recycled polypropylene, cellulose and newsprint fibres for production of green composites. Detritus, 7(September), 36–43. https://doi.org/10.31025/2611-4135/2019.13857
dcterms.referencesBraun, J., Edler, M., Emig, J., Gahleitner, M., Kahlen, S., Sandholzer, M., Scriba, M., & Tranninger, M. (2017). Polypropylene (PP). Kunststoffe International, 107(10), 14–19. https://doi.org/10.4324/9780429447341-59
dcterms.referencesBurande, B. C., Dhakite, P. A., & Rawat, S. G. (2018). Studty of Biopolymers Based on Renewable 114 Resources - A Review . International Journal of Scientific Research in Science and Technology , July. http://ijsrst.com/IJSRST4111
dcterms.referencesCaceres, R. alvarez. (2007). Estadística aplicada a las ciencias de la salud - Rafael Álvarez Cáceres - Google Libros. Diaz de Santos. https://books.google.com.co/books?id=V2ZosgPYI0kC&pg=PA16&dq=variable+cualitativa &hl=es419&sa=X&ved=2ahUKEwj7g9r7y_v8AhWERDABHUfhDecQ6AF6BAgFEAI#v=onepag e&q=variable cualitativa&f=false
dcterms.referencesCaicedo, C., & Murillo, E. A. (2019). Structural, thermal, rheological, morphological and mechanical properties of polypropylene functionalized in molten state with maleinized hyperbranched polyol polyester. European Polymer Journal, 118(June), 254–264. https://doi.org/10.1016/j.eurpolymj.2019.06.005
dcterms.referencesCampilho, R. D. S. G. (2015). Natural fiber composites. In Natural Fiber Composites. https://doi.org/10.1201/b19062
dcterms.referencesCardona Uribe, N., Arenas Echeverry, C., Betancur Velez, M., Jaramillo, L., & Martinez, J. (2018). Possibilities of rice husk ash to be used as reinforcing filler in polymer sector -a review. Revista UIS Ingenierías, 13(1), 127–142. https://doi.org/10.18273/revuin.v17n1-2018012
dcterms.referencesCastro, C., & Lopes, C. (2022). Digital Government and Sustainable Development. Journal of the Knowledge Economy, 13(2), 880–903. https://doi.org/10.1007/s13132-021-00749-2
dcterms.referencesChauhan, S., Aggarwal, P., & Karmarkar, A. (2016). The effectiveness of m-TMI-grafted-PP as a coupling agent for wood polymer composites. Journal of Composite Materials, 50(25), 35153524. https://doi.org/10.1177/0021998315622050
dcterms.referencesChen, Y., Wang, N., Tong, G., Wu, D., Jin, X., & Zhu, X. (2018). Synthesis of Multiarm Star Polymer Based on Hyperbranched Polyester Core and Poly(ϵ-caprolactone) Arms and Its Application in UV-Curable Coating. ACS Omega, 3(10), 13928–13934. https://doi.org/10.1021/acsomega.8b02128
dcterms.referencesCode, K., & Ho, H. J. (2019). POLYPROPYLENE COMPOSITE RESIN COMPOSITION INCLUDING SILYATED MICROFIBRILLATED CELLULOSE AND VEHICLE PILLAR TRIM USING THE SAME. US patent.
dcterms.referencesCodou, A., Anstey, A., Misra, M., & Mohanty, A. K. (2018). Novel compatibilized nylon-based ternary blends with polypropylene and poly(lactic acid): Morphology evolution and rheological behaviour. RSC Advances, 8(28), 15709–15724. https://doi.org/10.1039/c8ra01707g
dcterms.referencesConsejo Nacional de Política Económica y Social. (2018). Conpes 3918. Estrategia para la implementación de los Objetivos de Desarrollo Sostenible (ODS) en Colombia. Documento Conpes 3918, 74.
dcterms.referencesConsejo Nacional de Política Económica y Social (CONPES). (2018). Política de Crecimiento Verde (CONPES 3934). Departamento Nacional de Planeación, 114.
dcterms.referencesCORPONOR. (2019). CORPONOR evalúa alternativas económicas para el Catatumbo. - Corponor. https://corponor.gov.co/web/index.php/2019/05/17/corponor-evalua-alternativaseconomicas-para-el-catatumbo/
dcterms.referencesCrawford, C. B., & Quinn, B. (2017). Physiochemical properties and degradation. In Microplastic Pollutants. https://doi.org/10.1016/b978-0-12-809406-8.00004-9
dcterms.referencesda Silva Barbosa Ferreira, E., Luna, C. B. B., Araújo, E. M., Siqueira, D. D., & Wellen, R. M. R. (2021). Polypropylene/wood powder/ethylene propylene diene monomer rubber-maleic anhydride composites: Effect of PP melt flow index on the thermal, mechanical, thermomechanical, water absorption, and morphological parameters. Polymer Composites, 42(1), 484–497. https://doi.org/10.1002/pc.25841
dcterms.referencesDahlem, M. A., Borsoi, C., Hansen, B., & Catto, A. L. (2019). Evaluation of different methods for extraction of nanocellulose from yerba mate residues. Carbohydrate Polymers, 218, 78–86. https://doi.org/10.1016/j.carbpol.2019.04.064
dcterms.referencesDahy, H. (2017). Biocomposite materials based on annual natural fibres and biopolymers – Design, fabrication and customized applications in architecture. Construction and Building Materials, 147, 212–220. https://doi.org/10.1016/j.conbuildmat.2017.04.079
dcterms.referencesde la Orden, M. U., González Sánchez, C., González Quesada, M., & Martínez Urreaga, J. (2007). Novel polypropylene-cellulose composites using polyethylenimine as coupling agent. Composites Part A: Applied Science and Manufacturing, 38(9), 2005–2012. https://doi.org/10.1016/j.compositesa.2007.05.008
dcterms.referencesDepartamento de estadística, anállisis matemático y optimización. (2021). Diseño y Análisis de Experimentos en el SPSS. In http://eio.usc.es/eipc1/BASE/BASEMASTER/FORMULARIOSPHP/MATERIALESMASTER/Mat_12_Apuntes%20SPSS.pdf. http://eio.usc.es/eipc1/BASE/BASEMASTER/FORMULARIOSPHP/MATERIALESMASTER/Mat_12_Apuntes SPSS.pdf
dcterms.referencesDepartamento Nacional de Planeación. (n.d.). El Consejo Nacional de Política Económica y Social, CONPES. Gov.Co.
dcterms.referencesDeutz, P. (2019). Circular Economy. In International Encyclopedia of Human Geography, Second Edition (Second Edi, Vol. 2). Elsevier. https://doi.org/10.1016/B978-0-08-102295-5.10630-4
dcterms.referencesDiop, M. F., & Torkelson, J. M. (2013). Maleic anhydride functionalization of polypropylene with suppressed molecular weight reduction via solid-state shear pulverization. Polymer, 54(16), 4143–4154. https://doi.org/10.1016/j.polymer.2013.06.003
dcterms.referencesDjafari Petroudy, S. R. (2017). Physical and mechanical properties of natural fibers. In Advanced High Strength Natural Fibre Composites in Construction. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100411-1.00003-0
dcterms.referencesDNP. (2016). Documento CONPES 3874. Politica Nacional Para La Gestión Integral De Residuos Solidos. Consejo Nacional de Política Económica y Social República De Colombia.Departamento Nacional De Planeación (DNP), 73.
dcterms.referencesDo, F. (2012). POLYPROPYLENE.
dcterms.referencesDuy Tran, T., Dang Nguyen, M., Thuc, C. N. H., Thuc, H. H., & Dang Tan, T. (2013). Study of mechanical properties of composite material based on polypropylene and Vietnamese rice husk filler. Journal of Chemistry, 2013. https://doi.org/10.1155/2013/752924
dcterms.referencesEl-Sakhawy, M., Tohamy, H. A. S., Salama, A., & Kamel, S. (2019). Thermal properties of carboxymethyl cellulose acetate butyrate. Cellulose Chemistry and Technology, 53(7–8), 667–675. https://doi.org/10.35812/CelluloseChemTechnol.2019.53.65
dcterms.referencesElkhaoulani, A., Arrakhiz, F. Z., Benmoussa, K., Bouhfid, R., & Qaiss, A. (2013). Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Materials and Design, 49, 203–208. https://doi.org/10.1016/j.matdes.2013.01.063
dcterms.referencesEsra Erbas Kiziltas, Alper Kiziltas, 2 Ellen C. Lee. (2017). Structure and Properties of Compatibilized Recycled Polypropylene/Recycled Polyamide 12 Blends with Cellulose Fibers Addition. Polymers and Polymer Composites, 16(2), 101–113. https://doi.org/10.1002/pc
dcterms.referencesEurope, P., & EPRO. (2019). Plastics - the Facts 2019.
dcterms.referencesFang, W., Yang, X., Li, Q., Li, M., & Xiao, G. (2020). Improved mode Ⅰ interlaminar fracture toughness of random polypropylene composite laminate via multiscale reinforcing formed by introducing functional nanofibrillated cellulose. Composites Part B: Engineering, 203, 108481. https://doi.org/10.1016/j.compositesb.2020.108481
dcterms.referencesFaris M. AL-Oqla; Mohd S. Salit. (2017). Materials Selection for Natural Fiber Composites. In Charlotte Cockle (Ed.), Woodhead Publishing (Vol. 53, Issue 9).
dcterms.referencesFink, J. K. R. polymers fundamentals and applications : a concise guide to industrial polymer. (2005). reactive polymers fundamentals and applications. William Andrew Pub.
dcterms.referencesFlores-Gallardo, S. G., Sánchez-Valdes, S., & Ramos De Valle, L. F. (2001). Polypropylene/polypropylene-grafted acrylic acid blends for multilayer films: Preparation and characterization. Journal of Applied Polymer Science, 79(8), 1497–1505. https://doi.org/10.1002/1097-4628(20010222)79:8<1497::AID-APP170>3.0.CO;2-3
dcterms.referencesFourati, Y., Tarrés, Q., Mutjé, P., & Boufi, S. (2018). PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohydrate Polymers, 199(July), 51–57. https://doi.org/10.1016/j.carbpol.2018.07.008
dcterms.referencesFranciszczak, P., Wojnowski, J., Kalniņš, K., & Piesowicz, E. (2019). The influence of matrix crystallinity on the mechanical performance of short-fibre composites – Based on homopolypropylene and a random polypropylene copolymer reinforced with man-made cellulose and glass fibres. Composites Part Engineering, 166, 516–526. https://doi.org/10.1016/j.compositesb.2019.02.046
dcterms.referencesGarcía Arbeláez, C ., G . Vallejo, M. . L. . H. y E. . M. . E. (2016). EL ACUERDO DE PARÍS ASÍ ACTUARÁ COLOMBIA FRENTE AL CAMBIO CLIMÁTICO.
dcterms.referencesGholampour, A., & Ozbakkaloglu, T. (2019). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. In Journal of Materials Science (Vol. 55, Issue 3). Springer US. https://doi.org/10.1007/s10853-01903990-y
dcterms.referencesGobierno de Colombia. (2021). ESTRATEGIA CLIMÁTICA DE LARGO PLAZO DE COLOMBIA PARA CUMPLIR CON EL ACUERDO DE PARÍS. https://acmineria.com.co/acm/wpcontent/uploads/2021/05/040521-DOCUMENTO-LTS-E2050-COLOMBIA.pdf
dcterms.referencesGreenpeace. (2019). Branded. Vol. II: Identifying the World’s top corporate plastic polluters. II, 77.
dcterms.referencesGu, F., Hall, P., & Miles, N. J. (2016). Performance evaluation for composites based on recycled polypropylene using principal component analysis and cluster analysis. Journal of Cleaner Production, 115, 343–353. https://doi.org/10.1016/j.jclepro.2015.12.062
dcterms.referencesGuna, V., Ilangovan, M., Rather, M. H., Giridharan, B. V., Prajwal, B., Vamshi Krishna, K., Venkatesh, K., & Reddy, N. (2020). Groundnut shell / rice husk agro-waste reinforced polypropylene hybrid biocomposites. Journal of Building Engineering, 27, 100991. https://doi.org/10.1016/j.jobe.2019.100991
dcterms.referencesHaftka, S., & Könnecke, K. (1991). Physical Properties of Syndiotactic Polypropylene. Journal of Macromolecular Science, Part B, 30(4), 319–334. https://doi.org/10.1080/00222349108219480
dcterms.referencesHamielec, A. E., & Soares, J. B. P. (1999). Metallocene catalyzed polymerization: industrial technology. 446–453. https://doi.org/10.1007/978-94-011-4421-6_62
dcterms.referencesHammani, S., Moulai-mostefa, N., Samyn, P., Bechelany, M., Dufresne, A., & Barhoum, A. (2020). Morphology, Rheology and Crystallization in Relation to the Viscosity Ratio of Polystyrene/Polypropylene Polymer Blends. Materials, 13(926), 1–20.
dcterms.referencesHearle, J. W. S. (1962). The structure and mechanical properties of fibres. Journal of the Textile Institute Proceedings, 53(8), P449–P464. https://doi.org/10.1080/19447016208688781
dcterms.referencesHeidbreder, L. M., Bablok, I., Drews, S., & Menzel, C. (2019). Tackling the plastic problem: A review on perceptions, behaviors, and interventions. Science of the Total Environment, 668, 1077–1093. https://doi.org/10.1016/j.scitotenv.2019.02.437
dcterms.referencesHidalgo-Salazar, M. A., Correa-Aguirre, J. P., García-Navarro, S., & Roca-Blay, L. (2020). Injection molding of coir coconut fiber reinforced polyolefin blends: Mechanical, viscoelastic, thermal behavior and three-dimensional microscopy study. Polymers, 12(7), 1–20. https://doi.org/10.3390/polym12071507
dcterms.referencesHsieh, T. T., Tiu, C., & Simon, G. P. (2001). Melt rheology of aliphatic hyperbranched polyesters with various molecular weights. Polymer, 42(5), 1931–1939. https://doi.org/10.1016/S00323861(00)00441-9
dcterms.referencesHuang, J., Xu, C., Wu, D., & Lv, Q. (2017). Transcrystallization of polypropylene in the presence of polyester/cellulose nanocrystal composite fibers. In Carbohydrate Polymers (Vol. 167). Elsevier Ltd. https://doi.org/10.1016/j.carbpol.2017.03.046
dcterms.referencesHuang, L., Wu, Q., Wang, Q., Ou, R., & Wolcott, M. (2020). Solvent-free pulverization and surface fatty acylation of pulp fiber for property-enhanced cellulose/polypropylene composites. Journal of Cleaner Production, 244. https://doi.org/10.1016/j.jclepro.2019.118811
dcterms.referencesHuang, L., Wu, Q., Wang, Q., & Wolcott, M. (2020a). Interfacial crystals morphology modi fi cation in cellulose fi ber / polypropylene composite by mechanochemical method. 130(August 2019). https://doi.org/10.1016/j.compositesa.2020.105765
dcterms.referencesHuang, L., Wu, Q., Wang, Q., & Wolcott, M. (2020b). Interfacial crystals morphology modification in cellulose fiber/polypropylene composite by mechanochemical method. Composites Part A: Applied Science and Manufacturing, 130(January). https://doi.org/10.1016/j.compositesa.2020.105765
dcterms.referencesHuang, T., Kwan, I., Li, K. D., & Ek, M. (2020). Effect of cellulose oxalate as cellulosic reinforcement in ternary composites of polypropylene/maleated polypropylene/cellulose. Composites Part A: Applied Science and Manufacturing, 134(November 2019), 105894. https://doi.org/10.1016/j.compositesa.2020.105894
dcterms.referencesHuner, U. (2017). Effect of chemical treatment and maleic anhydride grafted polypropylene coupling agent on rice husk and rice husk reinforced composite. Materials Express, 7(2), 134144. https://doi.org/10.1166/mex.2017.1359
dcterms.referencesHwang, K. J., Park, J. W., Kim, I., Ha, C. S., & Kim, G. H. (2006). Effect of a compatibilizer on the microstructure and properties of partially biodegradable LDPE/aliphatic polyester/organoclay nanocomposites. Macromolecular Research, 14(2), 179–186. https://doi.org/10.1007/BF03218506
dcterms.referencesIsmail, H., Ragunathan, S., & Hussin, K. (2011). Tensile properties, swelling, and water absorption behavior of rice-husk-powder-filled polypropylene/(recycled acrylonitrile-butadiene rubber) composites. Journal of Vinyl and Additive Technology, 17(3), 190–197. https://doi.org/10.1002/vnl.20261
dcterms.referencesIvanova, R., & Kotsilkova, R. (2018). Rheological study of poly(lactic) acid nanocomposites with carbon nanotubes and graphene additives as a tool for materials characterization for 3D printing application. Applied Rheology, 28(5), 1–10. https://doi.org/10.3933/ApplRheol-2854014
dcterms.referencesJahani, Y. (2011). Comparison of the effect of mica and talc and chemical coupling on the rheology, morphology, and mechanical properties of polypropylene composites. Polymers for Advanced Technologies, 22(6), 942–950. https://doi.org/10.1002/pat.1600
dcterms.referencesJAY L. DEVORE California. (2008). probabilidad y estadistica para ingeniera y ciencias (S. R. C. Gonzales (Ed.); septima).
dcterms.referencesJayanta Bera, D. D. K. (2008). Properties of Polypropylene Filled with Chemically Treated Rice Husk Jayanta. Journal of Applied Polymer Science, 110(5), 1271–1279. https://doi.org/10.1002/app.28747
dcterms.referencesJin Yang, Shaorong Lu, Qiyun Luo, Laifu Song, Yuqi Li, J. Y. (2016). Enhanced Mechanical and Thermal Properties of Polypropylene/Cellulose Fibers Composites With Modified Tannic as a Compatibilizer. Polymers and Polymer Composites, 39, 2036–2045. https://doi.org/10.1002/pc.24165
dcterms.referencesJoão, P. D. C., Teresa, R.-S., & Armando, C. D. (2020). The environmental impacts of plastics and micro-plastics use , waste and pollution: EU and national measures. European Union, October.
dcterms.referencesJournal, M. P., Subbaiah, K. V., & Devi, K. D. (2013). Optimization Studies on Mechanical Properties of Montmorillonite ( Mmt ) Clay Filled Epoxy / Polyester. Polymer Journal, 8(2), 34–40.
dcterms.referencesJuan, R., Domínguez, C., Robledo, N., Paredes, B., & García-Muñoz, R. A. (2020). Incorporation of recycled high-density polyethylene to polyethylene pipe grade resins to increase close-loop recycling and Underpin the circular economy. Journal of Cleaner Production, 276. https://doi.org/10.1016/j.jclepro.2020.124081
dcterms.referencesKaraagac, E., Jones, M. P., Koch, T., & Archodoulaki, V. (2021). Polypropylene Contamination in Post-Consumer Polyolefin Waste : Characterisation , Consequences and Compatibilisation. Polymers, 13. https://doi.org/10.3390/ polym13162618
dcterms.referencesKarian, H. G. (2003). HANDBOOK POLYPROPYLENE AND POLYPROPYLENE Second Edition, Revised and Expanded COMPOSITES.
dcterms.referencesKaynak, B., Spoerk, M., Shirole, A., Ziegler, W., & Sapkota, J. (2018). Polypropylene/Cellulose Composites for Material Extrusion Additive Manufacturing. Macromolecular Materials and Engineering, 303(5), 1–8. https://doi.org/10.1002/mame.201800037
dcterms.referencesKhajeheian, M. B., & Rosling, A. (2015). Rheological and Thermal Properties of PeroxideModified Poly(l-lactide)s for Blending Purposes. Journal of Polymers and the Environment, 23(1), 62–71. https://doi.org/10.1007/s10924-014-0693-4
dcterms.referencesKhalid, M., Ratnam, C. T., Chuah, T. G., Ali, S., & Choong, T. S. Y. (2008). Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose. Materials and Design, 29(1), 173–178 https://doi.org/10.1016/j.matdes.2006.11.002
dcterms.referencesKim, H. S., Lee, B. H., Choi, S. W., Kim, S., & Kim, H. J. (2007). The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flourfilled polypropylene composites. Composites Part A: Applied Science and Manufacturing, 38(6), 1473–1482. https://doi.org/10.1016/j.compositesa.2007.01.004
dcterms.referencesKim, J. S., Kim, D. H., & Lee, Y. S. (2021). Various properties of PP/EVOH blends applying itaconic acid based compatibilizer according to ethylene content in the EVOH. PolymerPlastics Technology and Materials, 60(11), 1176–1184. https://doi.org/10.1080/25740881.2021.1882492
dcterms.referencesKim, Y. K. (2012). Natural fibre composites (NFCs) for construction and automotive industries. In Handbook of Natural Fibres (Issue 2000). Woodhead Publishing Limited. https://doi.org/10.1533/9780857095510.2.254
dcterms.referencesKind Code, & Al., L. T. ; et. (2019). Fiber reinforced polypropylene composite (Patent No. 20190241725).
dcterms.referencesKingly. (2015). Impact Measurement & Cradle To Grave.
dcterms.referencesKoay, S. C., Chan, M. Y., Pang, M. M., & Tshai, K. Y. (2018). Influence of filler loading and palm oil-based green coupling agent on torque rheological properties of polypropylene/cocoa pod husk composites. Advances in Polymer Technology, 37(6), 2246–2252. https://doi.org/10.1002/adv.21883
dcterms.referencesKotek, R., Afshari, M., Avci, H., & Najafi, M. (2017). Production of polyolefins. In Polyolefin Fibres: Structure, Properties and Industrial Applications: Second Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101132-4.00007-2
dcterms.referencesKracalik, M. (2018). New approach for investigation of reinforcement in polymer nanocomposites using oscillatory shear flow data. Epitoanyag - Journal of Silicate Based and Composite Materials, 70(2), 42–47. https://doi.org/10.14382/epitoanyag-jsbcm.2018.9
dcterms.referencesKwan, W. H., & Wong, Y. S. (2020). Acid leached rice husk ash (ARHA) in concrete: A review. Materials Science for Energy Technologies, 3, 501–507.https://doi.org/10.1016/j.mset.2020.05.001
dcterms.referencesLazim, N. H., & Samat, N. (2017). Effects of Irradiated Recycled Polypropylene Compatibilizer on the Mechanical Properties of Microcrystalline Cellulose Reinforced Recycled Polypropylene Composites. Procedia Engineering, 184(Mcc), 538–543.
dcterms.referencesLi, D., Zhou, L., Wang, X., He, L., & Yang, X. (2019). Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. Materials, 12(11). https://doi.org/10.3390/ma12111746
dcterms.referencesLi, Q., & Tzoganakis, C. (2007). Functionalization of PP with Sulfonyl Azide through Reactive Processing. International Polymer Processing, 22(3), 311–319. https://doi.org/10.3139/217.2039
dcterms.referencesLicari, J. J., & Swanson, D. W. (2011). Test and Inspection Methods. In Adhesives Technology for Electronic Applications. https://doi.org/10.1016/b978-1-4377-7889-2.10007-5
dcterms.referencesLin, T. A., Lin, M. C., Lin, J. Y., Lin, J. H., Chuang, Y. C., & Lou, C. W. (2020). Modified polypropylene/ thermoplastic polyurethane blends with maleic-anhydride grafted polypropylene: blending morphology and mechanical behaviors. Journal of Polymer Research, 27(2). https://doi.org/10.1007/s10965-019-1974-3
dcterms.referencesLiu, H., Xie, T., Ou, Y., Fang, X., & Yang, G. (2004). Dynamic rheological properties of polypropylene/polyamide-6 blends modified with a maleated thermoplastic elastomer. Polymer Journal, 36(9), 754–760. https://doi.org/10.1295/polymj.36.754
dcterms.referencesLocock, K. E., Deane, J., Kosior, E., Prabaharan, H., Skidmore, M., & Hutt, O. E. (2017). The Recycled Plastics Market: Global Analysis and Trends.
dcterms.referencesLópez de Dicastillo, C., Velásquez, E., Rojas, A., Guarda, A., & Galotto, M. J. (2020). The use of nanoadditives within recycled polymers for food packaging: Properties, recyclability, and safety. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1760–1776. https://doi.org/10.1111/1541-4337.12575
dcterms.referencesLu Wang, Douglas J. Gardner, D. W. B. (2017). Cellulose Nanofibril-Reinforced Polypropylene Composites for Material Extrusion: Rheological Properties. Society, 1–10. https://doi.org/10.1002/pen.24615
dcterms.referencesLucio, N. Q. (2014). Estadistica con SPSS 22. In วารสารวิชาการมหาวิทยาลัยอีสเทิร์นเอเชีย (Macro E.I., Vol. 4, Issue 1).
dcterms.referencesLudueña, L., Fasce, D., Alvarez, V. A., & Stefani, P. M. (2011). Nanocellulose from rice husk following alkaline treatment to remove silica. BioResources, 6(2), 1440–1453. https://doi.org/10.15376/biores.6.2.1440-1453
dcterms.referencesLuz, S. M., Del Tio, J., Rocha, G. J. M., Gonçalves, A. R., & Del’Arco, A. P. (2008). Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: Effect of acetylation on mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing, 39(9), 1362–1369. https://doi.org/10.1016/j.compositesa.2008.04.014
dcterms.referencesMaddah, H. A. (2016). Polypropylene as a Promising Plastic : A Review. American Journal of Polymer Science, 6(1), 1–11. https://doi.org/10.5923/j.ajps.20160601.01
dcterms.referencesMADS. (2019). Estrategia Nacional de Economía Circular. In Gobierno de Colombia. http://www.andi.com.co/Uploads/Estrategia Nacional de EconÃ3mia Circular-2019 Final.pdf_637176135049017259.pdf
dcterms.referencesMannan, M., & Al-Ghamdi, S. G. (2021). Complementing circular economy with life cycle assessment: Deeper understanding of economic, social, and environmental sustainability. Circular Economy and Sustainability: Volume 1: Management and Policy, September 2021, 145–160. https://doi.org/10.1016/B978-0-12-819817-9.00032-6
dcterms.referencesMartín-Alvarez, P. J. (2006). Análisis de varianza factorial. El procedimiento Modelo lineal general: Univariante. Prácticas de Tratamiento Estadístico de Datos Con El Programa SPSS Para Windows: Aplicaciones En El Área de Ciencia y Tecnologia de Alimentos, 27, 260.
dcterms.referencesMazhandu, Z. S., Muzenda, E., Mamvura, T. A., Belaid, M., & Nhubu, T. (2020). Integrated and consolidated review of plastic waste management and bio-based biodegradable plastics: Challenges and opportunities. Sustainability (Switzerland), 12(20), 1–57. https://doi.org/10.3390/su12208360
dcterms.referencesMihai, M., Huneault, M. A., Favis, B. D., & Li, H. (2007). Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromolecular Bioscience, 7(7), 907–920. https://doi.org/10.1002/mabi.200700080
dcterms.referencesMinagricultura. (2020). Ministerio de Agricultura y Desarrollo Rural. 16.
dcterms.referencesMinambiente.gov.co. (n.d.). Protocolo de Kioto | Ministerio de Ambiente y Desarrollo Sostenible. Minambiente.Gov.Co. Retrieved June 9, 2021, from https://www.minambiente.gov.co/index.php/convencion-marco-de-naciones-unidas-para-elcambio-climatico-cmnucc/protocolo-de-kioto
dcterms.referencesMinambiente. (2020). 1342 24 Dic 2020.
dcterms.referencesMinimisation, W. (2014). The Definition of Recycling What is Recycling ? 1–12.
dcterms.referencesMitra, N., Prasad, D., & Banerjee, S. (2019). Identification of molecular vibrations associated with tacticity in polypropylene: Density functional theory-based simulations. Journal of Polymer Science, Part B: Polymer Physics, 57(20), 1378–1385. https://doi.org/10.1002/polb.24880
dcterms.referencesMohajan, H. K. (2022). Cradle to Cradle is a Sustainable Economic Policy for the Better Future. Annals of Spiru Haret University, 4(January), 11. https://doi.org/10.26458/21433
dcterms.referencesMolding, T., & Materials, E. (2004). Standard Test Methods for Determining the Izod Pendulum Impact Resistance of. In Methods (Issue January).
dcterms.referencesMontgomery, D. C. A. S. U. (2017). Design and Analysis of Experiments Ninth Edition. www.wiley.com/go/permissions.%0Ahttps://lccn.loc.gov/2017002355
dcterms.referencesMorais, D. S., Ávila, B., Lopes, C., Rodrigues, M. A., Vaz, F., Machado, A. V., Fernandes, M. H., Guedes, R. M., & Lopes, M. A. (2020). Surface functionalization of polypropylene (PP) by chitosan immobilization to enhance human fibroblasts viability. Polymer Testing, 86(February). https://doi.org/10.1016/j.polymertesting.2020.106507
dcterms.referencesN. H. Lazim, N. S. (2017). The Influence of Irradiated Recycled Polypropylene Compatibilizer on the Impact Fracture Behavior of Recycled Polypropylene/Microcrystalline Cellulose Composites. Polymer Composites, 16(2), 1–10. https://doi.org/10.1002/pc.24430
dcterms.referencesNatural fiber composites: What’s holding them back? | CompositesWorld. (n.d.). Retrieved February 4, 2021, from https://www.compositesworld.com/articles/natural-fiber-compositeswhats-holding-them-back
dcterms.referencesNguyen-tri, P., Sollogoub, C., Guinault, A., Nguyen-tri, P., Sollogoub, C., Guinault, A., Phuong, N. T., Sollogoub, C., & Guinault, A. (2020). Relationship between fiber chemical treatment and properties of recycled pp / bamboo fiber composites To cite this version : HAL Id : hal02625690 Relationship between fiber chemical treatment and properties of recycled pp / bamboo fiber composites.
dcterms.referencesNukala, S. G., Kong, I., Kakarla, A. B., Kong, W., & Kong, W. (2022). Development of Wood Polymer Composites from Recycled Wood and Plastic Waste: Thermal and Mechanical Properties. Journal of Composites Science, 6(7). https://doi.org/10.3390/jcs6070194
dcterms.referencesOCDE. (2020, April 28). Colombia - Organisation for Economic Co-operation and Development. https://www.oecd.org/latin-america/paises/colombia/
dcterms.referencesOnoja, D. A., & Ahemen, I. (2019). Synthesis and Characterization of Cellulose Based Nanofibres from Rice Husk. IOSR Journal of Applied Physics (IOSR-JAP, 11(2), 80–87. https://doi.org/10.9790/4861-1102038087
dcterms.referencesOrji, B. O., & McDonald, A. G. (2020). Evaluation of the mechanical, thermal and rheological properties of recycled polyolefins rice-hull composites. Materials, 13(3). https://doi.org/10.3390/ma13030667
dcterms.referencesPanthapulakkal, S., Law, S., & Sain, M. (2005). Enhancement of processability of rice husk filled high-density polyethylene composite profiles. Journal of Thermoplastic Composite Materials, 18(5), 445–458. https://doi.org/10.1177/0892705705054398
dcterms.referencesPasangulapati, V., Ramachandriya, K. D., Kumar, A., Wilkins, M. R., Jones, C. L., & Huhnke, R. L. (2012). Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresource Technology, 114, 663–669. https://doi.org/10.1016/j.biortech.2012.03.036
dcterms.referencesPassaglia, E., Coiai, S., & Augier, S. (2009). Control of macromolecular architecture during the reactive functionalization in the melt of olefin polymers. Progress in Polymer Science (Oxford), 34(9), 911–947. https://doi.org/10.1016/j.progpolymsci.2009.04.008
dcterms.referencesPatti, A., Acierno, D., Lecocq, H., Serghei, A., & Cassagnau, P. (2021). Viscoelastic behaviour of highly filled polypropylene with solid and liquid Tin microparticles: influence of the stearic acid additive. Rheologica Acta, 60(11), 661–673. https://doi.org/10.1007/s00397-021-01297x
dcterms.referencesPérez, C. (2004). Técnicas de análisis multivariante de datos. In Pearson Prentice Hall. http://bit.ly/1JzSD8y
dcterms.referencesPinzón, D. D., de Camargo, R. V., dos Santos Luiz, D., Branco, L. T. P., Grillo, C. C., & Saron, C. (2020). Composites of Recycled Polypropylene from Cotton Swab Waste with Pyrolyzed Rice Husk. Journal of Polymers and the Environment, 0123456789. https://doi.org/10.1007/s10924-020-01883-9
dcterms.referencesQiu, W., Endo, T., & Hirotsu, T. (2004). Interfacial interactions of a novel mechanochemical composite of cellulose with maleated polypropylene. Journal of Applied Polymer Science, 94(3), 1326–1335. https://doi.org/10.1002/app.21123
dcterms.referencesQiu, W., Zhang, F., Endo, T., & Hirotsu, T. (2003). Preparation and characteristics of composites of high-crystalline cellulose with polypropylene: Effects of maleated polypropylene and cellulose content. Journal of Applied Polymer Science, 87(2), 337–345. https://doi.org/10.1002/app.11446
dcterms.referencesQiu, W., Zhang, F., Endo, T., & Hirotsu, T. (2005). Effect of maleated polypropylene on the performance of polypropylene/ cellulose composite. Polymer Composites, 26(4), 448–453. https://doi.org/10.1002/pc.20119
dcterms.referencesQuispe, C. D. L. (2016). Diccionario de metodologia de la investigacion cientifica. In publicia (Vol. 1, Issue 1).
dcterms.referencesRadzi, A. M., Sapuan, S. M., Jawaid, M., & Mansor, M. R. (2019). Water absorption, thickness swelling and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8(5), 39883994. https://doi.org/10.1016/j.jmrt.2019.07.007
dcterms.referencesRaghu, N., Kale, A., Chauhan, S., & Aggarwal, P. K. (2018). Rice husk reinforced polypropylene composites: mechanical, morphological and thermal properties. Journal of the Indian Academy of Wood Science, 15(1), 96–104. https://doi.org/10.1007/s13196-018-0212-7
dcterms.referencesRasheed, M., Jawaid, M., Parveez, B., Zuriyati, A., & Khan, A. (2020). Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. In International Journal of Biological Macromolecules (Vol. 160). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.05.170
dcterms.referencesRavindran, L., Sreekala, M. S., & Thomas, S. (2019). Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships. International Journal of Biological Macromolecules, 131, 858–870. https://doi.org/10.1016/j.ijbiomac.2019.03.134
dcterms.referencesReale Batista, M. D., Drzal, L. T., Kiziltas, A., & Mielewski, D. (2020). Hybrid cellulose-inorganic reinforcement polypropylene composites: Lightweight materials for automotive applications. Polymer Composites, 41(3), 1074–1089. https://doi.org/10.1002/pc.25439
dcterms.referencesResconi, L., Jones, R. L., Rheingold, A. L., & Yap, G. P. A. (1996). High-molecular-weight atactic polypropylene from metallocene catalysts. 1. Me2Si(9-Flu)2ZrX2 (X = Cl, Me). Organometallics, 15(3), 998–1005. https://doi.org/10.1021/om950197h
dcterms.referencesRinawa, K., Maiti, S. N., Sonnier, R., Rinawa, K., Maiti, S. N., Sonnier, R., & Dynamic, J. L. (2022). Dynamic rheological studies and applicability of time-temperature superposition principle for PA12 / SEBS-g-MA blends To cite this version : HAL Id : hal-02914222.
dcterms.referencesRishina, L., Kissin, Y. V., Lalayan, S. S., & Krasheninnikov, V. G. (2019). Synthesis of atactic polypropylene: Propylene polymerization reactions with TiCl 4 –Al(C 2 H 5 ) 2 Cl/Mg(C 4 H 9 ) 2 catalyst. Journal of Applied Polymer Science, 136(25), 1–8. https://doi.org/10.1002/app.47692
dcterms.referencesRodríguez, E., Arqués, J. L., Rodríguez, R., Nuñez, M., Medina, M., Talarico, T. L., Casas, I. A., Chung, T. C., Dobrogosz, W. J., Axelsson, L., Lindgren, S. E., Dobrogosz, W. J., Kerkeni, L., Ruano, P., Delgado, L. L., Picco, S., Villegas, L., Tonelli, F., Merlo, M., … Masuelli, M. (1989). Natural Fibers: Applications. Intech, 32(tourism), 137–144. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-inbiometrics
dcterms.referencesRosa, S. M. L., Nachtigall, S. M. B., & Ferreira, C. A. (2009). Thermal and dynamic-mechanical characterization of rice-husk filled polypropylene composites. Macromolecular Research, 17(1), 8–13. https://doi.org/10.1007/BF03218594
dcterms.referencesRosa, S. M. L., Rehman, N., De Miranda, M. I. G., Nachtigall, S. M. B., & Bica, C. I. D. (2012). Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydrate Polymers, 87(2), 1131–1138. https://doi.org/10.1016/j.carbpol.2011.08.084
dcterms.referencesRozman, H. D., Lai, C. Y., Ismail, H., & Mohd Ishak, Z. A. (2000). Effect of coupling agents on the mechanical and physical properties of oil palm empty fruit bunch-polypropylene composites. Polymer International, 49(11), 1273–1278. https://doi.org/10.1002/10970126(200011)49:11<1273::AID-PI469>3.0.CO;2-U
dcterms.referencesRyu, Y. S., Lee, J. H., & Kim, S. H. (2020). Efficacy of alkyl ketene dimer modified microcrystalline cellulose in polypropylene matrix. Polymer, 196(March), 122463. https://doi.org/10.1016/j.polymer.2020.122463
dcterms.referencesSafdari, F., Carreau, P. J., Heuzey, M. C., Kamal, M. R., & Sain, M. M. (2017). Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose, 24(2), 755767. https://doi.org/10.1007/s10570-016-1137-1
dcterms.referencesSancho, J. J. (2012). analisis multivariante. http://www.acmcb.es/files/425-3501-DOCUMENT/Sancho-9-14Maig12.pdf
dcterms.referencesSantiagoo, R., Ismail, H., & Suharty, N. (2018). Comparison of Processing and Mechanical Properties of Polypropylene/Recycled Acrylonitrile Butadiene Rubber/Rice Husk Powder Composites Modified With Silane and Acetic Anhydride Compound. In Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites (pp. 333–347). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102160-6.00017-2
dcterms.referencesSchuyler, Q. A., Wilcox, C., Townsend, K. A., Wedemeyer-Strombel, K. R., Balazs, G., van Sebille, E., & Hardesty, B. D. (2016). Risk analysis reveals global hotspots for marine debris ingestion by sea turtles. Global Change Biology, 22(2), 567–576. https://doi.org/10.1111/gcb.13078
dcterms.referencesShamsollahi, Z., & Partovinia, A. (2019). Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review. Journal of Environmental Management, 246(May), 314–323. https://doi.org/10.1016/j.jenvman.2019.05.145
dcterms.referencesShukla, S. K., & Bharadvaja, A. (2015). Extraction of Cellulose Micro Sheets from Rice Husk: A Scalable Chemical Approach Preparation and application of Bio electrode View project. December 2016. https://www.researchgate.net/publication/311876106
dcterms.referencesSojoudiasli, H., Heuzey, M. C., & Carreau, P. J. (2014). Rheological, morphological and mechanical properties of flax fiber polypropylene composites: Influence of compatibilizers. Cellulose, 21(5), 3797–3812. https://doi.org/10.1007/s10570-014-0375-3
dcterms.referencesSoltani, N., Bahrami, A., Pech-Canul, M. I., & González, L. A. (2015). Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal, 264, 899–935. https://doi.org/10.1016/j.cej.2014.11.056
dcterms.referencesSong, J. (2015). thermoplastics and thermoplastic composites. Inequality in the Workplace, 896. https://doi.org/10.7591/j.ctt5hh0qp.3
dcterms.referencesSoury, E., Behravesh, A. H., Rizvi, G. M., & Jam, N. J. (2012). Rheological Investigation of WoodPolypropylene Composites in Rotational Plate Rheometer. Journal of Polymers and the Environment, 20(4), 998–1006. https://doi.org/10.1007/s10924-012-0502-x
dcterms.referencesSpicker, C., Rudolph, N., Kühnert, I., & Aumnate, C. (2019). The use of rheological behavior to monitor the processing and service life properties of recycled polypropylene. Food Packaging and Shelf Life, 19(June 2018), 174–183. https://doi.org/10.1016/j.fpsl.2019.01.002
dcterms.referencesSpoljaric, S., Genovese, A., & Shanks, R. A. (2009). Polypropylene-microcrystalline cellulose composites with enhanced compatibility and properties. Composites Part A: Applied Science and Manufacturing, 40(6–7), 791–799. https://doi.org/10.1016/j.compositesa.2009.03.011
dcterms.referencesStein, V., & Schemmel, T. (2020). Sustainable Rice Husk Ash-Based High-Temperature Insulating Materials. InterCeram: International Ceramic Review, 69(4–5), 30–37. https://doi.org/10.1007/s42411-020-0119-3
dcterms.referencesStephen Morton, David Pencheon, and N. S., & Sustainability. (2017). Sustainable Development Goals (SDGs), and their implementation A national global framework for health, development and equity needs a systems approach at every level Stephen. British Medical Bulletin, 124(October), 81–90. https://doi.org/10.1093/bmb/ldx031
dcterms.referencesSuzuki, K., Homma, Y., Igarashi, Y., Okumura, H., & Yano, H. (2017). Effect of preparation process of microfibrillated cellulose-reinforced polypropylene upon dispersion and mechanical properties. Cellulose, 24(9), 3789–3801. https://doi.org/10.1007/s10570-0171355-1
dcterms.referencesSyduzzaman, M., Faruque, M. A. Al, Bilisik, K., & Naebe, M. (2020). Plant-based natural fibre reinforced composites: A review on fabrication, properties and applications. Coatings, 10(10), 1–34. https://doi.org/10.3390/coatings10100973
dcterms.referencesT.C. Mike Chung. (2001). Functionalization of Polyolefins. In academic press (Vol. 53, Issue 9). http://publications.lib.chalmers.se/records/fulltext/245180/245180.pdf%0Ahttps://hdl.handle .net/20.500.12380/245180%0Ahttp://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://d oi.org/10.1016/j.gr.2017.08.001%0Ahttp://dx.doi.org/10.1016/j.precamres.2014.12
dcterms.referencesTabak, C., Keskin, S., Akbasak, T., & Ozkoc, G. (2020). Polypropylene/Spray Dried and Silane Treated Nanofibrillated Cellulose Composites. Polymer Engineering and Science, 60(2), 352361. https://doi.org/10.1002/pen.25290
dcterms.referencesTajvidi, M., & Takemura, A. (2010). Thermal degradation of natural fiber-reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 23(3), 281–298. https://doi.org/10.1177/0892705709347063
dcterms.referencesTamásBárány;József Karger-Kocsis (1950–2018). (2019). Polypropylene handbook: Morphology, Blends and Composites. In Choice Reviews Online (Vol. 43, Issue 05). https://doi.org/10.5860/choice.43-2825
dcterms.referencesThakur, V. K., Vennerberg, D., & Kessler, M. R. (2014). Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Applied Materials and Interfaces, 6(12), 9349–9356. https://doi.org/10.1021/am501726d
dcterms.referencesTzounis, P. N., Argyropoulou, D. V., Anogiannakis, S. D., & Theodorou, D. N. (2018). Tacticity Effect on the Conformational Properties of Polypropylene and Poly(ethylene-propylene) Copolymers. Macromolecules, 51(17), 6878–6891. https://doi.org/10.1021/acs.macromol.8b01099
dcterms.referencesUmmartyotin, S., & Pechyen, C. (2016). Microcrystalline-cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging. Carbohydrate Polymers, 142, 133–140. https://doi.org/10.1016/j.carbpol.2016.01.020
dcterms.referencesUniversidad de los Andes, & Greenpeace Colombia. (2019). Situación actual de Colombia y su impacto en el medio ambiente. 14.
dcterms.referencesUribe, F. G. O. U. (2003). Diccionario de Metodologia de La Investigacion Cientifica. In Libro8 Editorial Limusa (Vol. 1). https://drive.google.com/file/d/1PxTICezCcbZ5vj5l9FrRXfmZ1HRNpWF_/view?fbclid=Iw AR1NpUV20GPct8wf9nn70LkLcW-z2C83JDuIUgqBTgZtql7RZg0o5V8XyNA
dcterms.referencesV. Mazzanti, F. Mollica, N. E. K. (2015). Rheological and Mechanical Characterization of Polypropylene-Based Wood Plastic Composites. Polymer Composites, 37(12), 3460–3473. https://doi.org/10.1002/pc
dcterms.referencesVallejo Zamudio, L. E. (2019). El plan nacional de desarrollo 2018-2022: “Pacto por Colombia, pacto por la equidad.” Apuntes Del Cenes. https://doi.org/10.19053/01203053.v38.n68.2019.9924
dcterms.referencesVesel, A., & Mozetic, M. (2010). ON THE FUNCTIONALIZATION OF POLYPROPYLENE WITH CF 4 PLASMA CREATED IN CAPACITIVELY COUPLED RF DISCHARGE (Vol. 1).
dcterms.referencesVineta Srebrenkoska, Gordana Bogoeva Gaceva, Maurizio Avella, M. E. E., & Gentile, and G. (2008). Recycling of polypropylene-based eco-composites. Polym Int, 55, 6. https://doi.org/10.1002/pi.2470
dcterms.referencesWang, D., Yang, B., Chen, Q. T., Chen, J., Su, L. F., Chen, P., Zheng, Z. Z., Miao, J. Bin, Qian, J. S., Xia, R., & Shi, Y. (2019). A facile evaluation on melt crystallization kinetics and thermal properties of low-density polyethylene (LDPE)/Recycled polyethylene terephthalate (RPET) blends. Advanced Industrial and Engineering Polymer Research, 2(3), 126–135. https://doi.org/10.1016/j.aiepr.2019.05.002
dcterms.referencesWang, K., Li, T., Xie, S., Wu, X., Huang, W., Tian, Q., Tu, C., & Yan, W. (2019). Influence of organo-sepiolite on the morphological, mechanical, and rheological properties of PP/ABS blends. Polymers, 11(9), 1–11. https://doi.org/10.3390/polym11091493
dcterms.referencesWang, S., Li, H., Zou, S., & Zhang, G. (2020). Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energy and Buildings, 226, 110358. https://doi.org/10.1016/j.enbuild.2020.110358
dcterms.referencesWaste, E. U., Directive, F., & Birli, A. (2015). 3R CONCEPT-REDUCE-REUSE- RECYCLE Waste. In Energy Efficient Solutions For Built Environments.
dcterms.referencesWibisono, Y., Fadila, C. R., Saiful, S., & Bilad, M. R. (2020). Facile approaches of polymeric face masks reuse and reinforcements for micro-aerosol droplets and viruses filtration: A review. Polymers, 12(11), 1–18. https://doi.org/10.3390/polym12112516
dcterms.referencesWu, H., Xu, D., Zhou, Y., Gao, C., Guo, J., He, W., He, Y., & Qin, S. (2020). Tung Oil Anhydride Modified Hemp Fiber/Polypropylene Composites: The Improved Toughness, Thermal Stability and Rheological Property. Fibers and Polymers, 21(9), 2084–2091. https://doi.org/10.1007/s12221-020-1157-1
dcterms.referencesWu, H., Xu, D., Zhou, Y., Guo, J., He, W., He, Y., Yi, Y., & Qin, S. (2021). The Improved Mechanical and Thermal Properties of Hemp Fibers Reinforced Polypropylene Composites with Dodecyl Bromide Modification. Fibers and Polymers, 22(10), 2869–2877. https://doi.org/10.1007/s12221-021-0127-6
dcterms.referencesWWF. (2020). Transparent 2020. June.
dcterms.referencesYalcin, D. (2021). Tensile Testing Concepts & Definitions. ResearchGate, May, 1–12.
dcterms.referencesYashas Gowda, T. G., Sanjay, M. R., Subrahmanya Bhat, K., Madhu, P., Senthamaraikannan, P., Yogesha, B., & Pham, D. (2018). Polymer matrix-natural fiber composites: An overview. Cogent Engineering, 5(1), 1446667. https://doi.org/10.1080/23311916.2018.1446667
dcterms.referencesYazdani-Pedram Zobeiri, Mehrdad; Calderón del Río, Katia Romina; Quijada Abarca, J. (2000). Functionalization of polypropylene in solution through grafting with monomethyl itaconate. 45, 269–282. https://doi.org/0366-1644
dcterms.referencesYeh, S. K., Hsieh, C. C., Chang, H. C., Yen, C. C. C., & Chang, Y. C. (2015). Synergistic effect of coupling agents and fiber treatments on mechanical properties and moisture absorption of polypropylene-rice husk composites and their foam. Composites Part A: Applied Science and Manufacturing, 68, 313–322. https://doi.org/10.1016/j.compositesa.2014.10.019
dcterms.referencesYuanita, E., Pratama, J. N., & Chalid, M. (2017). Preparation of Micro Fibrillated Cellulose Based on Arenga Pinnata “Ijuk” Fibre for Nucleating Agent of Polypropylene: Characterization, Optimization and Feasibility Study. Macromolecular Symposia, 371(1), 61–68. https://doi.org/10.1002/masy.201600039
dcterms.referencesYunus, M. A. (2019). Extraction Cellulose From Rice Husk. Jurnal Akta Kimia Indonesia (Indonesia Chimica Acta), 12(2), 79. https://doi.org/10.20956/ica.v12i2.6559
dcterms.referencesYunus, M. A., Raya, I., & Tuara, Z. I. (2019). Synthesis cellulose from rice husk. Indonesia Chimica Acta, 12(2), 79–83.
dcterms.referencesZarges, J. C., Minkley, D., Feldmann, M., & Heim, H. P. (2017). Fracture toughness of injection molded, man-made cellulose fiber reinforced polypropylene. Composites Part A: Applied Science and Manufacturing, 98, 147–158. https://doi.org/10.1016/j.compositesa.2017.03.022
dcterms.referencesZhang, Z., Wan, D., Xing, H., Zhang, Z., Tan, H., Wang, L., Zheng, J., An, Y., & Tang, T. (2012). A new grafting monomer for synthesizing long chain branched polypropylene through melt radical reaction. Polymer, 53(1), 121–129. https://doi.org/10.1016/j.polymer.2011.11.033
dcterms.referencesZhang, Z., Zhang, R., Huang, Y., Lei, J., Chen, Y. H., Tang, J. H., & Li, Z. M. (2014). Efficient utilization of atactic polypropylene in its isotactic polypropylene blends via “structuring” processing. Industrial and Engineering Chemistry Research, 53(24), 10144–10154. https://doi.org/10.1021/ie5012867
dcterms.referencesZurina, M., Ismail, H., & Bakar, A. A. (2004). Rice Husk Powder – Filled Polystyrene / Styrene Butadiene Rubber Blends. Journal of Applied Polymer Science, Vol. 92, 3320–3332 (2004), 92(M), 3320–3332.
dcterms.references刘会. (n.d.). CN109021398A - A kind of high-toughness high-strength polypropylene plastics and preparation method thereof - Google Patents.
dcterms.references刘桂成杨维曦马俊杰. (n.d.). CN107841034 Modified polypropylene composite material with KT1 as compatibilizer.
dcterms.references汪龙汪彪. (n.d.). A kind of nano-cellulose reinforced polypropylene foamed material and preparation method thereof.
dc.description.notesArchivo Medios Electrónicosspa
dc.description.degreelevelPregrado
dc.description.degreenameQuímico Industrialspa
dc.identifier.instnameinstname:Universidad Francisco de Paula Santander
dc.identifier.reponamereponame:Repositorio Digital UFPS
dc.identifier.repourlrepourl:https://repositorio.ufps.edu.co/
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeSan José de Cúcutaspa
dc.publisher.programQuímica Industrialspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembPolipropileno recicladospa
dc.subject.lembCelulosa Cristalinaspa
dc.subject.lembMateriales compuestosspa
dc.subject.lembAcoplamientospa
dc.subject.lembPropiedadesspa
dc.subject.proposalPolipropileno recicladospa
dc.subject.proposalMateriales compuestosspa
dc.subject.proposalCelulosa cristalinaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.signatureTQI V00002/2023spa
dc.contributor.juryReyes Gómez, Sonia Esperanza
dc.contributor.juryParra Llanos, John Wilmer
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)