Mostrar el registro sencillo del ítem
Evaluación de un polipropileno funcionalizado con un poliéster altamente ramificado maleinizado, como agente de acoplamiento para materiales compuestos de polipropileno reciclado y celulosa de la cascarilla de arroz
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.contributor.advisor | Murillo Ruiz, Edwin Alberto | |
dc.contributor.author | Contreras Atuesta, Ingrid Yuliani | |
dc.date.accessioned | 2024-06-13T20:44:56Z | |
dc.date.available | 2024-06-13T20:44:56Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/7721 | |
dc.description.abstract | En el presente trabajo, fueron preparados materiales compuestos a partir de polipropileno reciclado (PPr) y celulosa de la cascarilla de arroz (Cel) empleando como agente de acoplamiento un polipropileno funcionalizado con un poliéster poliol altamente ramificado maleinizado (PP-g-MHBP). Por otra parte, para evaluar las propiedades estructurales, térmicas, reológicas, morfológicas y mecánicas de los materiales se realizaron los siguientes análisis: infrarrojo, difracción de rayos X, termogravimétrico, calorimetría de barrido diferencial, reológico, microscopia de barrido electrónico, absorción de humedad, absorción de agua y espesor de hinchamiento, índice de fluidez, dureza, resistencia al impacto, tracción y conductividad térmica. La Cel redujo la cristalinidad del PPr, pero el PP-g-MHBP no afectó apreciablemente las fases cristalinas del PPr y la Cel. La cristalinidad, la adhesión interfacial, la resistencia al impacto y la conductividad térmica de las mezclas, incrementaron con el contenido de PP-g-MHBP. Además, el PP-g-MHBP también mejoró la estabilidad térmica y actúo como agente plastificante, y acoplante para las mezclas de PPr/Cel. La mejor interacción entre el PPr y la Cel fue obtenida empleando un 20 % del PP-g-MHBP. Además, el módulo elástico, la fuerza tensil y la elongación a la ruptura no mostraron una dependencia con el contenido de PP-g-MHBP. | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN 1 2. PLANTEAMIENTO DEL PROBLEMA 3 3. JUSTIFICACIÓN 8 4. MARCO REFERENCIAL 12 4.1. ESTADO DEL ARTE 12 4.2. MARCO TEÓRICO 16 4.2.1. PP 16 4.2.2. Funcionalización de las poliolefinas 18 4.2.3. Fibras naturales 20 4.2.4. CA 21 4.2.5. Materiales compuestos de fibras naturales 22 4.2.6. Economía circular 24 4.2.7. Análisis de ciclo de vida (LCA) 27 4.2.8. ANOVA 27 4.3. MARCO CONCEPTUAL 30 4.3.1. Agentes de acoplamiento. 30 4.3.2. Análisis multivariante. 30 4.3.3. Compatibilización. 30 4.3.4. Cradle to Cradle (C2C). 30 4.3.5. Cradle to Grave. 30 4.3.6. Distribución normal. 31 4.3.7. Elongación a la ruptura. 31 4.3.8. Fuerza ténsil. 31 4.3.9. Funcionalización. 31 4.3.10. Hipótesis nula (H0). 32 4.3.11. Hipótesis alternativa (Ha o H1). 32 4.3.12. Hipótesis operacional. 32 4.3.13. Hipótesis estadística. 32 4.3.14. Intersección. 32 4.3.15. Material compuesto. 33 4.3.16. Medias marginales 33 4.3.17. Modelo ANOVA de efectos fijos 33 4.3.18. Modelo ANOVA de efectos aleatorios 33 4.3.19. Modelo corregido 33 4.3.20. Modulo ténsil o tracción 34 4.3.21. Objetivos de desarrollo sostenible 34 4.3.22. Prueba de los efectos inter-sujetos 34 4.3.23. Prueba F 34 4.3.24. Reciclar 35 4.3.25. Relleno 35 4.3.26. Reducir 35 4.3.27. Reutilizar 35 4.3.28. Variable 36 4.3.29. Variable dependiente 36 4.3.30. Variable independiente 36 4.3.31. Variable métrica o cuantitativas 36 4.3.32. Variable no métrica o cualitativas 36 4.3.33. Varianza de error 37 4.4. MARCO LEGAL 37 4.4.1. Legislación internacional 37 4.4.1.1. Convenios internacionales 37 4.4.2. Legislación nacional 39 5. OBJETIVOS 40 5.1. Objetivo General 40 5.2. Objetivos específicos 40 6. METODOLOGÍA 41 6.1. DISEÑO EXPERIMENTAL 41 6.2. PROCEDIMIENTO EXPERIMENTAL 41 6.2.1. Materiales 41 6.2.2. Preparación de los materiales 42 6.2.3. Caracterización de los materiales 45 7. ANALISIS Y DISCUSIÓN DE LOS RESULTADOS 49 7.1. Obtención de la Cel 49 7.2. Análisis granulométrico 49 7.2. Reometría de torque 50 7.3. Análisis IR 52 7.4. DRX 54 7.5. TGA 56 7.6. DSC 60 7.7. Reología 63 7.7.1. Análisis estático 63 7.7.1. Energía de activación 65 7.7.2. Amplitud sweep 68 7.7.3. Análisis oscilatorio 69 7.7.4. Comportamiento de G' y G'' 70 7.7.5. Regla de Cox-Merz 72 7.7.6. Tiempos de relajación 74 7.7.7. Diagrama de Van Gurp-Palmen 75 7.7.8. Diagrama de Cole-Cole 76 7.8. SEM 78 7.9. AH 80 7.10. AbA y el EH 82 7.11. MFI 84 7.12. Dureza 85 7.13. Resistencia al impacto 86 7.14. Tracción 87 7.15. Conductividad térmica 89 7.16. Resultados ANOVA 91 7.16.1. Hipótesis Operacional 91 7.16.2. Hipótesis Estadística 91 7.16.3. Análisis de Resultados 91 7.17. PROTOTIPO 103 8. CONCLUSIONES 107 9. PERSPECTIVAS DEL TRABAJO 108 10. PRODUCCIÓN CIENTÍFICA 109 11. REFERENCIAS 112 | |
dc.format | application/pdf | |
dc.format.extent | 157 páginas. ilustraciones, (Trabajo completo) 3.843 KB | |
dc.publisher | Universidad Francisco de Paula Santander | spa |
dc.rights | Derechos Reservados - Universidad Francisco de Paula Santander, 2023 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source | https://catalogobiblioteca.ufps.edu.co/descargas/tesis/TG_1950020.pdf | |
dc.title | Evaluación de un polipropileno funcionalizado con un poliéster altamente ramificado maleinizado, como agente de acoplamiento para materiales compuestos de polipropileno reciclado y celulosa de la cascarilla de arroz | spa |
dc.type | Trabajo de grado - Pregrado | |
dcterms.references | Acharya, S., & Chaudhary, A. (2012). Bioprospecting thermophiles for cellulase production: A review. Brazilian Journal of Microbiology, 43(3), 844–856. https://doi.org/10.1590/S151783822012000300001 | |
dcterms.references | Ahmad, Z., Roziaizan, N. N., Rahman, R., Mohamad, A. F., & Wan Ismail, W. I. N. (2016). Isolation and characterization of Microcrystalline Cellulose (MCC) from Rice Husk (RH). MATEC Web of Conferences, 47(January). https://doi.org/10.1051/matecconf/20164705013 | |
dcterms.references | Alqahtani, N., Alejji, M., & Labidi, S. (2021). Influence of Compatibilizers on Date Palm Fiber and High Density Polyethylene Composite. American Journal of Engineering, Science and Technology (AJEST), 10(MARCH 2021), 62–81. | |
dcterms.references | Ararat, C. A., Quiñonez, W., & Murillo, E. A. (2019). Maleinized Hyperbranched Polyol Polyester: Effect of the Content of Maleic Anhydride in the Structural, Thermal and Rheological Properties. Macromolecular Research, 27(7), 693–702. https://doi.org/10.1007/s13233-0197089-1 | |
dcterms.references | Ariyoshi, S., Hashimoto, S., Ohnishi, S., Negishi, S., Mikami, H., Hayashi, K., Tanaka, S., & Hiroshiba, N. (2021). Broadband terahertz spectroscopy of cellulose nanofiber-reinforced polypropylenes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 265, 115000. https://doi.org/10.1016/j.mseb.2020.115000 | |
dcterms.references | Arjmandi, R., Hassan, A., Majeed, K., & Zakaria, Z. (2015). Rice Husk Filled Polymer Composites. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/501471 | |
dcterms.references | Arjmandi, R., Ismail, A., Hassan, A., & Abu Bakar, A. (2017). Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Construction and Building Materials, 152, 484–493. https://doi.org/10.1016/j.conbuildmat.2017.07.052 | |
dcterms.references | ASTM-D2240. (2017). Standant method for Rubber Property - Durometer Hardness. In Annual Book of ASTM Standarts (p. 13). | |
dcterms.references | ASTM. (2010). D1238-13 Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. Norma, 08, 1–16. https://doi.org/10.1520/D1238-13. | |
dcterms.references | ASTM D638. (2014). Standard Test Method for Tensile Properties of Plastics. In ASTM Standards (Vol. 08). | |
dcterms.references | Baulch, S., & Perry, C. (2014). Evaluating the impacts of marine debris on cetaceans. Marine Pollution Bulletin, 80(1–2), 210–221. https://doi.org/10.1016/j.marpolbul.2013.12.050 | |
dcterms.references | Bengtsson, M., Baillif, M. Le, & Oksman, K. (2007). Extrusion and mechanical properties of highly filled cellulose fibre-polypropylene composites. Composites Part A: Applied Science and Manufacturing, 38(8), 1922–1931. https://doi.org/10.1016/j.compositesa.2007.03.004 | |
dcterms.references | Beyer;, D. G., & Hopmann, P. D. C. (2018). Reactive Extrusion: Principles and Applications. In Encyclopedia of Polymer Science and Engineering, Vol. 14. | |
dcterms.references | Bhattacharyya, D., Subasinghe, A., & Kim, N. K. (2015). Natural fibers: Their composites and flammability characterizations. In Multifunctionality of Polymer Composites: Challenges and New Solutions. Elsevier Inc. https://doi.org/10.1016/B978-0-323-26434-1.00004-0 | |
dcterms.references | Bogataj, V., Fajs, P., Peñalva, C., Omahen, M., Čop, M., & Henttonen, A. (2019). Utilization of recycled polypropylene, cellulose and newsprint fibres for production of green composites. Detritus, 7(September), 36–43. https://doi.org/10.31025/2611-4135/2019.13857 | |
dcterms.references | Braun, J., Edler, M., Emig, J., Gahleitner, M., Kahlen, S., Sandholzer, M., Scriba, M., & Tranninger, M. (2017). Polypropylene (PP). Kunststoffe International, 107(10), 14–19. https://doi.org/10.4324/9780429447341-59 | |
dcterms.references | Burande, B. C., Dhakite, P. A., & Rawat, S. G. (2018). Studty of Biopolymers Based on Renewable 114 Resources - A Review . International Journal of Scientific Research in Science and Technology , July. http://ijsrst.com/IJSRST4111 | |
dcterms.references | Caceres, R. alvarez. (2007). Estadística aplicada a las ciencias de la salud - Rafael Álvarez Cáceres - Google Libros. Diaz de Santos. https://books.google.com.co/books?id=V2ZosgPYI0kC&pg=PA16&dq=variable+cualitativa &hl=es419&sa=X&ved=2ahUKEwj7g9r7y_v8AhWERDABHUfhDecQ6AF6BAgFEAI#v=onepag e&q=variable cualitativa&f=false | |
dcterms.references | Caicedo, C., & Murillo, E. A. (2019). Structural, thermal, rheological, morphological and mechanical properties of polypropylene functionalized in molten state with maleinized hyperbranched polyol polyester. European Polymer Journal, 118(June), 254–264. https://doi.org/10.1016/j.eurpolymj.2019.06.005 | |
dcterms.references | Campilho, R. D. S. G. (2015). Natural fiber composites. In Natural Fiber Composites. https://doi.org/10.1201/b19062 | |
dcterms.references | Cardona Uribe, N., Arenas Echeverry, C., Betancur Velez, M., Jaramillo, L., & Martinez, J. (2018). Possibilities of rice husk ash to be used as reinforcing filler in polymer sector -a review. Revista UIS Ingenierías, 13(1), 127–142. https://doi.org/10.18273/revuin.v17n1-2018012 | |
dcterms.references | Castro, C., & Lopes, C. (2022). Digital Government and Sustainable Development. Journal of the Knowledge Economy, 13(2), 880–903. https://doi.org/10.1007/s13132-021-00749-2 | |
dcterms.references | Chauhan, S., Aggarwal, P., & Karmarkar, A. (2016). The effectiveness of m-TMI-grafted-PP as a coupling agent for wood polymer composites. Journal of Composite Materials, 50(25), 35153524. https://doi.org/10.1177/0021998315622050 | |
dcterms.references | Chen, Y., Wang, N., Tong, G., Wu, D., Jin, X., & Zhu, X. (2018). Synthesis of Multiarm Star Polymer Based on Hyperbranched Polyester Core and Poly(ϵ-caprolactone) Arms and Its Application in UV-Curable Coating. ACS Omega, 3(10), 13928–13934. https://doi.org/10.1021/acsomega.8b02128 | |
dcterms.references | Code, K., & Ho, H. J. (2019). POLYPROPYLENE COMPOSITE RESIN COMPOSITION INCLUDING SILYATED MICROFIBRILLATED CELLULOSE AND VEHICLE PILLAR TRIM USING THE SAME. US patent. | |
dcterms.references | Codou, A., Anstey, A., Misra, M., & Mohanty, A. K. (2018). Novel compatibilized nylon-based ternary blends with polypropylene and poly(lactic acid): Morphology evolution and rheological behaviour. RSC Advances, 8(28), 15709–15724. https://doi.org/10.1039/c8ra01707g | |
dcterms.references | Consejo Nacional de Política Económica y Social. (2018). Conpes 3918. Estrategia para la implementación de los Objetivos de Desarrollo Sostenible (ODS) en Colombia. Documento Conpes 3918, 74. | |
dcterms.references | Consejo Nacional de Política Económica y Social (CONPES). (2018). Política de Crecimiento Verde (CONPES 3934). Departamento Nacional de Planeación, 114. | |
dcterms.references | CORPONOR. (2019). CORPONOR evalúa alternativas económicas para el Catatumbo. - Corponor. https://corponor.gov.co/web/index.php/2019/05/17/corponor-evalua-alternativaseconomicas-para-el-catatumbo/ | |
dcterms.references | Crawford, C. B., & Quinn, B. (2017). Physiochemical properties and degradation. In Microplastic Pollutants. https://doi.org/10.1016/b978-0-12-809406-8.00004-9 | |
dcterms.references | da Silva Barbosa Ferreira, E., Luna, C. B. B., Araújo, E. M., Siqueira, D. D., & Wellen, R. M. R. (2021). Polypropylene/wood powder/ethylene propylene diene monomer rubber-maleic anhydride composites: Effect of PP melt flow index on the thermal, mechanical, thermomechanical, water absorption, and morphological parameters. Polymer Composites, 42(1), 484–497. https://doi.org/10.1002/pc.25841 | |
dcterms.references | Dahlem, M. A., Borsoi, C., Hansen, B., & Catto, A. L. (2019). Evaluation of different methods for extraction of nanocellulose from yerba mate residues. Carbohydrate Polymers, 218, 78–86. https://doi.org/10.1016/j.carbpol.2019.04.064 | |
dcterms.references | Dahy, H. (2017). Biocomposite materials based on annual natural fibres and biopolymers – Design, fabrication and customized applications in architecture. Construction and Building Materials, 147, 212–220. https://doi.org/10.1016/j.conbuildmat.2017.04.079 | |
dcterms.references | de la Orden, M. U., González Sánchez, C., González Quesada, M., & Martínez Urreaga, J. (2007). Novel polypropylene-cellulose composites using polyethylenimine as coupling agent. Composites Part A: Applied Science and Manufacturing, 38(9), 2005–2012. https://doi.org/10.1016/j.compositesa.2007.05.008 | |
dcterms.references | Departamento de estadística, anállisis matemático y optimización. (2021). Diseño y Análisis de Experimentos en el SPSS. In http://eio.usc.es/eipc1/BASE/BASEMASTER/FORMULARIOSPHP/MATERIALESMASTER/Mat_12_Apuntes%20SPSS.pdf. http://eio.usc.es/eipc1/BASE/BASEMASTER/FORMULARIOSPHP/MATERIALESMASTER/Mat_12_Apuntes SPSS.pdf | |
dcterms.references | Departamento Nacional de Planeación. (n.d.). El Consejo Nacional de Política Económica y Social, CONPES. Gov.Co. | |
dcterms.references | Deutz, P. (2019). Circular Economy. In International Encyclopedia of Human Geography, Second Edition (Second Edi, Vol. 2). Elsevier. https://doi.org/10.1016/B978-0-08-102295-5.10630-4 | |
dcterms.references | Diop, M. F., & Torkelson, J. M. (2013). Maleic anhydride functionalization of polypropylene with suppressed molecular weight reduction via solid-state shear pulverization. Polymer, 54(16), 4143–4154. https://doi.org/10.1016/j.polymer.2013.06.003 | |
dcterms.references | Djafari Petroudy, S. R. (2017). Physical and mechanical properties of natural fibers. In Advanced High Strength Natural Fibre Composites in Construction. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100411-1.00003-0 | |
dcterms.references | DNP. (2016). Documento CONPES 3874. Politica Nacional Para La Gestión Integral De Residuos Solidos. Consejo Nacional de Política Económica y Social República De Colombia.Departamento Nacional De Planeación (DNP), 73. | |
dcterms.references | Do, F. (2012). POLYPROPYLENE. | |
dcterms.references | Duy Tran, T., Dang Nguyen, M., Thuc, C. N. H., Thuc, H. H., & Dang Tan, T. (2013). Study of mechanical properties of composite material based on polypropylene and Vietnamese rice husk filler. Journal of Chemistry, 2013. https://doi.org/10.1155/2013/752924 | |
dcterms.references | El-Sakhawy, M., Tohamy, H. A. S., Salama, A., & Kamel, S. (2019). Thermal properties of carboxymethyl cellulose acetate butyrate. Cellulose Chemistry and Technology, 53(7–8), 667–675. https://doi.org/10.35812/CelluloseChemTechnol.2019.53.65 | |
dcterms.references | Elkhaoulani, A., Arrakhiz, F. Z., Benmoussa, K., Bouhfid, R., & Qaiss, A. (2013). Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Materials and Design, 49, 203–208. https://doi.org/10.1016/j.matdes.2013.01.063 | |
dcterms.references | Esra Erbas Kiziltas, Alper Kiziltas, 2 Ellen C. Lee. (2017). Structure and Properties of Compatibilized Recycled Polypropylene/Recycled Polyamide 12 Blends with Cellulose Fibers Addition. Polymers and Polymer Composites, 16(2), 101–113. https://doi.org/10.1002/pc | |
dcterms.references | Europe, P., & EPRO. (2019). Plastics - the Facts 2019. | |
dcterms.references | Fang, W., Yang, X., Li, Q., Li, M., & Xiao, G. (2020). Improved mode Ⅰ interlaminar fracture toughness of random polypropylene composite laminate via multiscale reinforcing formed by introducing functional nanofibrillated cellulose. Composites Part B: Engineering, 203, 108481. https://doi.org/10.1016/j.compositesb.2020.108481 | |
dcterms.references | Faris M. AL-Oqla; Mohd S. Salit. (2017). Materials Selection for Natural Fiber Composites. In Charlotte Cockle (Ed.), Woodhead Publishing (Vol. 53, Issue 9). | |
dcterms.references | Fink, J. K. R. polymers fundamentals and applications : a concise guide to industrial polymer. (2005). reactive polymers fundamentals and applications. William Andrew Pub. | |
dcterms.references | Flores-Gallardo, S. G., Sánchez-Valdes, S., & Ramos De Valle, L. F. (2001). Polypropylene/polypropylene-grafted acrylic acid blends for multilayer films: Preparation and characterization. Journal of Applied Polymer Science, 79(8), 1497–1505. https://doi.org/10.1002/1097-4628(20010222)79:8<1497::AID-APP170>3.0.CO;2-3 | |
dcterms.references | Fourati, Y., Tarrés, Q., Mutjé, P., & Boufi, S. (2018). PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohydrate Polymers, 199(July), 51–57. https://doi.org/10.1016/j.carbpol.2018.07.008 | |
dcterms.references | Franciszczak, P., Wojnowski, J., Kalniņš, K., & Piesowicz, E. (2019). The influence of matrix crystallinity on the mechanical performance of short-fibre composites – Based on homopolypropylene and a random polypropylene copolymer reinforced with man-made cellulose and glass fibres. Composites Part Engineering, 166, 516–526. https://doi.org/10.1016/j.compositesb.2019.02.046 | |
dcterms.references | García Arbeláez, C ., G . Vallejo, M. . L. . H. y E. . M. . E. (2016). EL ACUERDO DE PARÍS ASÍ ACTUARÁ COLOMBIA FRENTE AL CAMBIO CLIMÁTICO. | |
dcterms.references | Gholampour, A., & Ozbakkaloglu, T. (2019). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. In Journal of Materials Science (Vol. 55, Issue 3). Springer US. https://doi.org/10.1007/s10853-01903990-y | |
dcterms.references | Gobierno de Colombia. (2021). ESTRATEGIA CLIMÁTICA DE LARGO PLAZO DE COLOMBIA PARA CUMPLIR CON EL ACUERDO DE PARÍS. https://acmineria.com.co/acm/wpcontent/uploads/2021/05/040521-DOCUMENTO-LTS-E2050-COLOMBIA.pdf | |
dcterms.references | Greenpeace. (2019). Branded. Vol. II: Identifying the World’s top corporate plastic polluters. II, 77. | |
dcterms.references | Gu, F., Hall, P., & Miles, N. J. (2016). Performance evaluation for composites based on recycled polypropylene using principal component analysis and cluster analysis. Journal of Cleaner Production, 115, 343–353. https://doi.org/10.1016/j.jclepro.2015.12.062 | |
dcterms.references | Guna, V., Ilangovan, M., Rather, M. H., Giridharan, B. V., Prajwal, B., Vamshi Krishna, K., Venkatesh, K., & Reddy, N. (2020). Groundnut shell / rice husk agro-waste reinforced polypropylene hybrid biocomposites. Journal of Building Engineering, 27, 100991. https://doi.org/10.1016/j.jobe.2019.100991 | |
dcterms.references | Haftka, S., & Könnecke, K. (1991). Physical Properties of Syndiotactic Polypropylene. Journal of Macromolecular Science, Part B, 30(4), 319–334. https://doi.org/10.1080/00222349108219480 | |
dcterms.references | Hamielec, A. E., & Soares, J. B. P. (1999). Metallocene catalyzed polymerization: industrial technology. 446–453. https://doi.org/10.1007/978-94-011-4421-6_62 | |
dcterms.references | Hammani, S., Moulai-mostefa, N., Samyn, P., Bechelany, M., Dufresne, A., & Barhoum, A. (2020). Morphology, Rheology and Crystallization in Relation to the Viscosity Ratio of Polystyrene/Polypropylene Polymer Blends. Materials, 13(926), 1–20. | |
dcterms.references | Hearle, J. W. S. (1962). The structure and mechanical properties of fibres. Journal of the Textile Institute Proceedings, 53(8), P449–P464. https://doi.org/10.1080/19447016208688781 | |
dcterms.references | Heidbreder, L. M., Bablok, I., Drews, S., & Menzel, C. (2019). Tackling the plastic problem: A review on perceptions, behaviors, and interventions. Science of the Total Environment, 668, 1077–1093. https://doi.org/10.1016/j.scitotenv.2019.02.437 | |
dcterms.references | Hidalgo-Salazar, M. A., Correa-Aguirre, J. P., García-Navarro, S., & Roca-Blay, L. (2020). Injection molding of coir coconut fiber reinforced polyolefin blends: Mechanical, viscoelastic, thermal behavior and three-dimensional microscopy study. Polymers, 12(7), 1–20. https://doi.org/10.3390/polym12071507 | |
dcterms.references | Hsieh, T. T., Tiu, C., & Simon, G. P. (2001). Melt rheology of aliphatic hyperbranched polyesters with various molecular weights. Polymer, 42(5), 1931–1939. https://doi.org/10.1016/S00323861(00)00441-9 | |
dcterms.references | Huang, J., Xu, C., Wu, D., & Lv, Q. (2017). Transcrystallization of polypropylene in the presence of polyester/cellulose nanocrystal composite fibers. In Carbohydrate Polymers (Vol. 167). Elsevier Ltd. https://doi.org/10.1016/j.carbpol.2017.03.046 | |
dcterms.references | Huang, L., Wu, Q., Wang, Q., Ou, R., & Wolcott, M. (2020). Solvent-free pulverization and surface fatty acylation of pulp fiber for property-enhanced cellulose/polypropylene composites. Journal of Cleaner Production, 244. https://doi.org/10.1016/j.jclepro.2019.118811 | |
dcterms.references | Huang, L., Wu, Q., Wang, Q., & Wolcott, M. (2020a). Interfacial crystals morphology modi fi cation in cellulose fi ber / polypropylene composite by mechanochemical method. 130(August 2019). https://doi.org/10.1016/j.compositesa.2020.105765 | |
dcterms.references | Huang, L., Wu, Q., Wang, Q., & Wolcott, M. (2020b). Interfacial crystals morphology modification in cellulose fiber/polypropylene composite by mechanochemical method. Composites Part A: Applied Science and Manufacturing, 130(January). https://doi.org/10.1016/j.compositesa.2020.105765 | |
dcterms.references | Huang, T., Kwan, I., Li, K. D., & Ek, M. (2020). Effect of cellulose oxalate as cellulosic reinforcement in ternary composites of polypropylene/maleated polypropylene/cellulose. Composites Part A: Applied Science and Manufacturing, 134(November 2019), 105894. https://doi.org/10.1016/j.compositesa.2020.105894 | |
dcterms.references | Huner, U. (2017). Effect of chemical treatment and maleic anhydride grafted polypropylene coupling agent on rice husk and rice husk reinforced composite. Materials Express, 7(2), 134144. https://doi.org/10.1166/mex.2017.1359 | |
dcterms.references | Hwang, K. J., Park, J. W., Kim, I., Ha, C. S., & Kim, G. H. (2006). Effect of a compatibilizer on the microstructure and properties of partially biodegradable LDPE/aliphatic polyester/organoclay nanocomposites. Macromolecular Research, 14(2), 179–186. https://doi.org/10.1007/BF03218506 | |
dcterms.references | Ismail, H., Ragunathan, S., & Hussin, K. (2011). Tensile properties, swelling, and water absorption behavior of rice-husk-powder-filled polypropylene/(recycled acrylonitrile-butadiene rubber) composites. Journal of Vinyl and Additive Technology, 17(3), 190–197. https://doi.org/10.1002/vnl.20261 | |
dcterms.references | Ivanova, R., & Kotsilkova, R. (2018). Rheological study of poly(lactic) acid nanocomposites with carbon nanotubes and graphene additives as a tool for materials characterization for 3D printing application. Applied Rheology, 28(5), 1–10. https://doi.org/10.3933/ApplRheol-2854014 | |
dcterms.references | Jahani, Y. (2011). Comparison of the effect of mica and talc and chemical coupling on the rheology, morphology, and mechanical properties of polypropylene composites. Polymers for Advanced Technologies, 22(6), 942–950. https://doi.org/10.1002/pat.1600 | |
dcterms.references | JAY L. DEVORE California. (2008). probabilidad y estadistica para ingeniera y ciencias (S. R. C. Gonzales (Ed.); septima). | |
dcterms.references | Jayanta Bera, D. D. K. (2008). Properties of Polypropylene Filled with Chemically Treated Rice Husk Jayanta. Journal of Applied Polymer Science, 110(5), 1271–1279. https://doi.org/10.1002/app.28747 | |
dcterms.references | Jin Yang, Shaorong Lu, Qiyun Luo, Laifu Song, Yuqi Li, J. Y. (2016). Enhanced Mechanical and Thermal Properties of Polypropylene/Cellulose Fibers Composites With Modified Tannic as a Compatibilizer. Polymers and Polymer Composites, 39, 2036–2045. https://doi.org/10.1002/pc.24165 | |
dcterms.references | João, P. D. C., Teresa, R.-S., & Armando, C. D. (2020). The environmental impacts of plastics and micro-plastics use , waste and pollution: EU and national measures. European Union, October. | |
dcterms.references | Journal, M. P., Subbaiah, K. V., & Devi, K. D. (2013). Optimization Studies on Mechanical Properties of Montmorillonite ( Mmt ) Clay Filled Epoxy / Polyester. Polymer Journal, 8(2), 34–40. | |
dcterms.references | Juan, R., Domínguez, C., Robledo, N., Paredes, B., & García-Muñoz, R. A. (2020). Incorporation of recycled high-density polyethylene to polyethylene pipe grade resins to increase close-loop recycling and Underpin the circular economy. Journal of Cleaner Production, 276. https://doi.org/10.1016/j.jclepro.2020.124081 | |
dcterms.references | Karaagac, E., Jones, M. P., Koch, T., & Archodoulaki, V. (2021). Polypropylene Contamination in Post-Consumer Polyolefin Waste : Characterisation , Consequences and Compatibilisation. Polymers, 13. https://doi.org/10.3390/ polym13162618 | |
dcterms.references | Karian, H. G. (2003). HANDBOOK POLYPROPYLENE AND POLYPROPYLENE Second Edition, Revised and Expanded COMPOSITES. | |
dcterms.references | Kaynak, B., Spoerk, M., Shirole, A., Ziegler, W., & Sapkota, J. (2018). Polypropylene/Cellulose Composites for Material Extrusion Additive Manufacturing. Macromolecular Materials and Engineering, 303(5), 1–8. https://doi.org/10.1002/mame.201800037 | |
dcterms.references | Khajeheian, M. B., & Rosling, A. (2015). Rheological and Thermal Properties of PeroxideModified Poly(l-lactide)s for Blending Purposes. Journal of Polymers and the Environment, 23(1), 62–71. https://doi.org/10.1007/s10924-014-0693-4 | |
dcterms.references | Khalid, M., Ratnam, C. T., Chuah, T. G., Ali, S., & Choong, T. S. Y. (2008). Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose. Materials and Design, 29(1), 173–178 https://doi.org/10.1016/j.matdes.2006.11.002 | |
dcterms.references | Kim, H. S., Lee, B. H., Choi, S. W., Kim, S., & Kim, H. J. (2007). The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flourfilled polypropylene composites. Composites Part A: Applied Science and Manufacturing, 38(6), 1473–1482. https://doi.org/10.1016/j.compositesa.2007.01.004 | |
dcterms.references | Kim, J. S., Kim, D. H., & Lee, Y. S. (2021). Various properties of PP/EVOH blends applying itaconic acid based compatibilizer according to ethylene content in the EVOH. PolymerPlastics Technology and Materials, 60(11), 1176–1184. https://doi.org/10.1080/25740881.2021.1882492 | |
dcterms.references | Kim, Y. K. (2012). Natural fibre composites (NFCs) for construction and automotive industries. In Handbook of Natural Fibres (Issue 2000). Woodhead Publishing Limited. https://doi.org/10.1533/9780857095510.2.254 | |
dcterms.references | Kind Code, & Al., L. T. ; et. (2019). Fiber reinforced polypropylene composite (Patent No. 20190241725). | |
dcterms.references | Kingly. (2015). Impact Measurement & Cradle To Grave. | |
dcterms.references | Koay, S. C., Chan, M. Y., Pang, M. M., & Tshai, K. Y. (2018). Influence of filler loading and palm oil-based green coupling agent on torque rheological properties of polypropylene/cocoa pod husk composites. Advances in Polymer Technology, 37(6), 2246–2252. https://doi.org/10.1002/adv.21883 | |
dcterms.references | Kotek, R., Afshari, M., Avci, H., & Najafi, M. (2017). Production of polyolefins. In Polyolefin Fibres: Structure, Properties and Industrial Applications: Second Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101132-4.00007-2 | |
dcterms.references | Kracalik, M. (2018). New approach for investigation of reinforcement in polymer nanocomposites using oscillatory shear flow data. Epitoanyag - Journal of Silicate Based and Composite Materials, 70(2), 42–47. https://doi.org/10.14382/epitoanyag-jsbcm.2018.9 | |
dcterms.references | Kwan, W. H., & Wong, Y. S. (2020). Acid leached rice husk ash (ARHA) in concrete: A review. Materials Science for Energy Technologies, 3, 501–507.https://doi.org/10.1016/j.mset.2020.05.001 | |
dcterms.references | Lazim, N. H., & Samat, N. (2017). Effects of Irradiated Recycled Polypropylene Compatibilizer on the Mechanical Properties of Microcrystalline Cellulose Reinforced Recycled Polypropylene Composites. Procedia Engineering, 184(Mcc), 538–543. | |
dcterms.references | Li, D., Zhou, L., Wang, X., He, L., & Yang, X. (2019). Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. Materials, 12(11). https://doi.org/10.3390/ma12111746 | |
dcterms.references | Li, Q., & Tzoganakis, C. (2007). Functionalization of PP with Sulfonyl Azide through Reactive Processing. International Polymer Processing, 22(3), 311–319. https://doi.org/10.3139/217.2039 | |
dcterms.references | Licari, J. J., & Swanson, D. W. (2011). Test and Inspection Methods. In Adhesives Technology for Electronic Applications. https://doi.org/10.1016/b978-1-4377-7889-2.10007-5 | |
dcterms.references | Lin, T. A., Lin, M. C., Lin, J. Y., Lin, J. H., Chuang, Y. C., & Lou, C. W. (2020). Modified polypropylene/ thermoplastic polyurethane blends with maleic-anhydride grafted polypropylene: blending morphology and mechanical behaviors. Journal of Polymer Research, 27(2). https://doi.org/10.1007/s10965-019-1974-3 | |
dcterms.references | Liu, H., Xie, T., Ou, Y., Fang, X., & Yang, G. (2004). Dynamic rheological properties of polypropylene/polyamide-6 blends modified with a maleated thermoplastic elastomer. Polymer Journal, 36(9), 754–760. https://doi.org/10.1295/polymj.36.754 | |
dcterms.references | Locock, K. E., Deane, J., Kosior, E., Prabaharan, H., Skidmore, M., & Hutt, O. E. (2017). The Recycled Plastics Market: Global Analysis and Trends. | |
dcterms.references | López de Dicastillo, C., Velásquez, E., Rojas, A., Guarda, A., & Galotto, M. J. (2020). The use of nanoadditives within recycled polymers for food packaging: Properties, recyclability, and safety. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1760–1776. https://doi.org/10.1111/1541-4337.12575 | |
dcterms.references | Lu Wang, Douglas J. Gardner, D. W. B. (2017). Cellulose Nanofibril-Reinforced Polypropylene Composites for Material Extrusion: Rheological Properties. Society, 1–10. https://doi.org/10.1002/pen.24615 | |
dcterms.references | Lucio, N. Q. (2014). Estadistica con SPSS 22. In วารสารวิชาการมหาวิทยาลัยอีสเทิร์นเอเชีย (Macro E.I., Vol. 4, Issue 1). | |
dcterms.references | Ludueña, L., Fasce, D., Alvarez, V. A., & Stefani, P. M. (2011). Nanocellulose from rice husk following alkaline treatment to remove silica. BioResources, 6(2), 1440–1453. https://doi.org/10.15376/biores.6.2.1440-1453 | |
dcterms.references | Luz, S. M., Del Tio, J., Rocha, G. J. M., Gonçalves, A. R., & Del’Arco, A. P. (2008). Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: Effect of acetylation on mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing, 39(9), 1362–1369. https://doi.org/10.1016/j.compositesa.2008.04.014 | |
dcterms.references | Maddah, H. A. (2016). Polypropylene as a Promising Plastic : A Review. American Journal of Polymer Science, 6(1), 1–11. https://doi.org/10.5923/j.ajps.20160601.01 | |
dcterms.references | MADS. (2019). Estrategia Nacional de Economía Circular. In Gobierno de Colombia. http://www.andi.com.co/Uploads/Estrategia Nacional de EconÃ3mia Circular-2019 Final.pdf_637176135049017259.pdf | |
dcterms.references | Mannan, M., & Al-Ghamdi, S. G. (2021). Complementing circular economy with life cycle assessment: Deeper understanding of economic, social, and environmental sustainability. Circular Economy and Sustainability: Volume 1: Management and Policy, September 2021, 145–160. https://doi.org/10.1016/B978-0-12-819817-9.00032-6 | |
dcterms.references | Martín-Alvarez, P. J. (2006). Análisis de varianza factorial. El procedimiento Modelo lineal general: Univariante. Prácticas de Tratamiento Estadístico de Datos Con El Programa SPSS Para Windows: Aplicaciones En El Área de Ciencia y Tecnologia de Alimentos, 27, 260. | |
dcterms.references | Mazhandu, Z. S., Muzenda, E., Mamvura, T. A., Belaid, M., & Nhubu, T. (2020). Integrated and consolidated review of plastic waste management and bio-based biodegradable plastics: Challenges and opportunities. Sustainability (Switzerland), 12(20), 1–57. https://doi.org/10.3390/su12208360 | |
dcterms.references | Mihai, M., Huneault, M. A., Favis, B. D., & Li, H. (2007). Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromolecular Bioscience, 7(7), 907–920. https://doi.org/10.1002/mabi.200700080 | |
dcterms.references | Minagricultura. (2020). Ministerio de Agricultura y Desarrollo Rural. 16. | |
dcterms.references | Minambiente.gov.co. (n.d.). Protocolo de Kioto | Ministerio de Ambiente y Desarrollo Sostenible. Minambiente.Gov.Co. Retrieved June 9, 2021, from https://www.minambiente.gov.co/index.php/convencion-marco-de-naciones-unidas-para-elcambio-climatico-cmnucc/protocolo-de-kioto | |
dcterms.references | Minambiente. (2020). 1342 24 Dic 2020. | |
dcterms.references | Minimisation, W. (2014). The Definition of Recycling What is Recycling ? 1–12. | |
dcterms.references | Mitra, N., Prasad, D., & Banerjee, S. (2019). Identification of molecular vibrations associated with tacticity in polypropylene: Density functional theory-based simulations. Journal of Polymer Science, Part B: Polymer Physics, 57(20), 1378–1385. https://doi.org/10.1002/polb.24880 | |
dcterms.references | Mohajan, H. K. (2022). Cradle to Cradle is a Sustainable Economic Policy for the Better Future. Annals of Spiru Haret University, 4(January), 11. https://doi.org/10.26458/21433 | |
dcterms.references | Molding, T., & Materials, E. (2004). Standard Test Methods for Determining the Izod Pendulum Impact Resistance of. In Methods (Issue January). | |
dcterms.references | Montgomery, D. C. A. S. U. (2017). Design and Analysis of Experiments Ninth Edition. www.wiley.com/go/permissions.%0Ahttps://lccn.loc.gov/2017002355 | |
dcterms.references | Morais, D. S., Ávila, B., Lopes, C., Rodrigues, M. A., Vaz, F., Machado, A. V., Fernandes, M. H., Guedes, R. M., & Lopes, M. A. (2020). Surface functionalization of polypropylene (PP) by chitosan immobilization to enhance human fibroblasts viability. Polymer Testing, 86(February). https://doi.org/10.1016/j.polymertesting.2020.106507 | |
dcterms.references | N. H. Lazim, N. S. (2017). The Influence of Irradiated Recycled Polypropylene Compatibilizer on the Impact Fracture Behavior of Recycled Polypropylene/Microcrystalline Cellulose Composites. Polymer Composites, 16(2), 1–10. https://doi.org/10.1002/pc.24430 | |
dcterms.references | Natural fiber composites: What’s holding them back? | CompositesWorld. (n.d.). Retrieved February 4, 2021, from https://www.compositesworld.com/articles/natural-fiber-compositeswhats-holding-them-back | |
dcterms.references | Nguyen-tri, P., Sollogoub, C., Guinault, A., Nguyen-tri, P., Sollogoub, C., Guinault, A., Phuong, N. T., Sollogoub, C., & Guinault, A. (2020). Relationship between fiber chemical treatment and properties of recycled pp / bamboo fiber composites To cite this version : HAL Id : hal02625690 Relationship between fiber chemical treatment and properties of recycled pp / bamboo fiber composites. | |
dcterms.references | Nukala, S. G., Kong, I., Kakarla, A. B., Kong, W., & Kong, W. (2022). Development of Wood Polymer Composites from Recycled Wood and Plastic Waste: Thermal and Mechanical Properties. Journal of Composites Science, 6(7). https://doi.org/10.3390/jcs6070194 | |
dcterms.references | OCDE. (2020, April 28). Colombia - Organisation for Economic Co-operation and Development. https://www.oecd.org/latin-america/paises/colombia/ | |
dcterms.references | Onoja, D. A., & Ahemen, I. (2019). Synthesis and Characterization of Cellulose Based Nanofibres from Rice Husk. IOSR Journal of Applied Physics (IOSR-JAP, 11(2), 80–87. https://doi.org/10.9790/4861-1102038087 | |
dcterms.references | Orji, B. O., & McDonald, A. G. (2020). Evaluation of the mechanical, thermal and rheological properties of recycled polyolefins rice-hull composites. Materials, 13(3). https://doi.org/10.3390/ma13030667 | |
dcterms.references | Panthapulakkal, S., Law, S., & Sain, M. (2005). Enhancement of processability of rice husk filled high-density polyethylene composite profiles. Journal of Thermoplastic Composite Materials, 18(5), 445–458. https://doi.org/10.1177/0892705705054398 | |
dcterms.references | Pasangulapati, V., Ramachandriya, K. D., Kumar, A., Wilkins, M. R., Jones, C. L., & Huhnke, R. L. (2012). Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresource Technology, 114, 663–669. https://doi.org/10.1016/j.biortech.2012.03.036 | |
dcterms.references | Passaglia, E., Coiai, S., & Augier, S. (2009). Control of macromolecular architecture during the reactive functionalization in the melt of olefin polymers. Progress in Polymer Science (Oxford), 34(9), 911–947. https://doi.org/10.1016/j.progpolymsci.2009.04.008 | |
dcterms.references | Patti, A., Acierno, D., Lecocq, H., Serghei, A., & Cassagnau, P. (2021). Viscoelastic behaviour of highly filled polypropylene with solid and liquid Tin microparticles: influence of the stearic acid additive. Rheologica Acta, 60(11), 661–673. https://doi.org/10.1007/s00397-021-01297x | |
dcterms.references | Pérez, C. (2004). Técnicas de análisis multivariante de datos. In Pearson Prentice Hall. http://bit.ly/1JzSD8y | |
dcterms.references | Pinzón, D. D., de Camargo, R. V., dos Santos Luiz, D., Branco, L. T. P., Grillo, C. C., & Saron, C. (2020). Composites of Recycled Polypropylene from Cotton Swab Waste with Pyrolyzed Rice Husk. Journal of Polymers and the Environment, 0123456789. https://doi.org/10.1007/s10924-020-01883-9 | |
dcterms.references | Qiu, W., Endo, T., & Hirotsu, T. (2004). Interfacial interactions of a novel mechanochemical composite of cellulose with maleated polypropylene. Journal of Applied Polymer Science, 94(3), 1326–1335. https://doi.org/10.1002/app.21123 | |
dcterms.references | Qiu, W., Zhang, F., Endo, T., & Hirotsu, T. (2003). Preparation and characteristics of composites of high-crystalline cellulose with polypropylene: Effects of maleated polypropylene and cellulose content. Journal of Applied Polymer Science, 87(2), 337–345. https://doi.org/10.1002/app.11446 | |
dcterms.references | Qiu, W., Zhang, F., Endo, T., & Hirotsu, T. (2005). Effect of maleated polypropylene on the performance of polypropylene/ cellulose composite. Polymer Composites, 26(4), 448–453. https://doi.org/10.1002/pc.20119 | |
dcterms.references | Quispe, C. D. L. (2016). Diccionario de metodologia de la investigacion cientifica. In publicia (Vol. 1, Issue 1). | |
dcterms.references | Radzi, A. M., Sapuan, S. M., Jawaid, M., & Mansor, M. R. (2019). Water absorption, thickness swelling and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8(5), 39883994. https://doi.org/10.1016/j.jmrt.2019.07.007 | |
dcterms.references | Raghu, N., Kale, A., Chauhan, S., & Aggarwal, P. K. (2018). Rice husk reinforced polypropylene composites: mechanical, morphological and thermal properties. Journal of the Indian Academy of Wood Science, 15(1), 96–104. https://doi.org/10.1007/s13196-018-0212-7 | |
dcterms.references | Rasheed, M., Jawaid, M., Parveez, B., Zuriyati, A., & Khan, A. (2020). Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. In International Journal of Biological Macromolecules (Vol. 160). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.05.170 | |
dcterms.references | Ravindran, L., Sreekala, M. S., & Thomas, S. (2019). Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships. International Journal of Biological Macromolecules, 131, 858–870. https://doi.org/10.1016/j.ijbiomac.2019.03.134 | |
dcterms.references | Reale Batista, M. D., Drzal, L. T., Kiziltas, A., & Mielewski, D. (2020). Hybrid cellulose-inorganic reinforcement polypropylene composites: Lightweight materials for automotive applications. Polymer Composites, 41(3), 1074–1089. https://doi.org/10.1002/pc.25439 | |
dcterms.references | Resconi, L., Jones, R. L., Rheingold, A. L., & Yap, G. P. A. (1996). High-molecular-weight atactic polypropylene from metallocene catalysts. 1. Me2Si(9-Flu)2ZrX2 (X = Cl, Me). Organometallics, 15(3), 998–1005. https://doi.org/10.1021/om950197h | |
dcterms.references | Rinawa, K., Maiti, S. N., Sonnier, R., Rinawa, K., Maiti, S. N., Sonnier, R., & Dynamic, J. L. (2022). Dynamic rheological studies and applicability of time-temperature superposition principle for PA12 / SEBS-g-MA blends To cite this version : HAL Id : hal-02914222. | |
dcterms.references | Rishina, L., Kissin, Y. V., Lalayan, S. S., & Krasheninnikov, V. G. (2019). Synthesis of atactic polypropylene: Propylene polymerization reactions with TiCl 4 –Al(C 2 H 5 ) 2 Cl/Mg(C 4 H 9 ) 2 catalyst. Journal of Applied Polymer Science, 136(25), 1–8. https://doi.org/10.1002/app.47692 | |
dcterms.references | Rodríguez, E., Arqués, J. L., Rodríguez, R., Nuñez, M., Medina, M., Talarico, T. L., Casas, I. A., Chung, T. C., Dobrogosz, W. J., Axelsson, L., Lindgren, S. E., Dobrogosz, W. J., Kerkeni, L., Ruano, P., Delgado, L. L., Picco, S., Villegas, L., Tonelli, F., Merlo, M., … Masuelli, M. (1989). Natural Fibers: Applications. Intech, 32(tourism), 137–144. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-inbiometrics | |
dcterms.references | Rosa, S. M. L., Nachtigall, S. M. B., & Ferreira, C. A. (2009). Thermal and dynamic-mechanical characterization of rice-husk filled polypropylene composites. Macromolecular Research, 17(1), 8–13. https://doi.org/10.1007/BF03218594 | |
dcterms.references | Rosa, S. M. L., Rehman, N., De Miranda, M. I. G., Nachtigall, S. M. B., & Bica, C. I. D. (2012). Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydrate Polymers, 87(2), 1131–1138. https://doi.org/10.1016/j.carbpol.2011.08.084 | |
dcterms.references | Rozman, H. D., Lai, C. Y., Ismail, H., & Mohd Ishak, Z. A. (2000). Effect of coupling agents on the mechanical and physical properties of oil palm empty fruit bunch-polypropylene composites. Polymer International, 49(11), 1273–1278. https://doi.org/10.1002/10970126(200011)49:11<1273::AID-PI469>3.0.CO;2-U | |
dcterms.references | Ryu, Y. S., Lee, J. H., & Kim, S. H. (2020). Efficacy of alkyl ketene dimer modified microcrystalline cellulose in polypropylene matrix. Polymer, 196(March), 122463. https://doi.org/10.1016/j.polymer.2020.122463 | |
dcterms.references | Safdari, F., Carreau, P. J., Heuzey, M. C., Kamal, M. R., & Sain, M. M. (2017). Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose, 24(2), 755767. https://doi.org/10.1007/s10570-016-1137-1 | |
dcterms.references | Sancho, J. J. (2012). analisis multivariante. http://www.acmcb.es/files/425-3501-DOCUMENT/Sancho-9-14Maig12.pdf | |
dcterms.references | Santiagoo, R., Ismail, H., & Suharty, N. (2018). Comparison of Processing and Mechanical Properties of Polypropylene/Recycled Acrylonitrile Butadiene Rubber/Rice Husk Powder Composites Modified With Silane and Acetic Anhydride Compound. In Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites (pp. 333–347). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102160-6.00017-2 | |
dcterms.references | Schuyler, Q. A., Wilcox, C., Townsend, K. A., Wedemeyer-Strombel, K. R., Balazs, G., van Sebille, E., & Hardesty, B. D. (2016). Risk analysis reveals global hotspots for marine debris ingestion by sea turtles. Global Change Biology, 22(2), 567–576. https://doi.org/10.1111/gcb.13078 | |
dcterms.references | Shamsollahi, Z., & Partovinia, A. (2019). Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review. Journal of Environmental Management, 246(May), 314–323. https://doi.org/10.1016/j.jenvman.2019.05.145 | |
dcterms.references | Shukla, S. K., & Bharadvaja, A. (2015). Extraction of Cellulose Micro Sheets from Rice Husk: A Scalable Chemical Approach Preparation and application of Bio electrode View project. December 2016. https://www.researchgate.net/publication/311876106 | |
dcterms.references | Sojoudiasli, H., Heuzey, M. C., & Carreau, P. J. (2014). Rheological, morphological and mechanical properties of flax fiber polypropylene composites: Influence of compatibilizers. Cellulose, 21(5), 3797–3812. https://doi.org/10.1007/s10570-014-0375-3 | |
dcterms.references | Soltani, N., Bahrami, A., Pech-Canul, M. I., & González, L. A. (2015). Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal, 264, 899–935. https://doi.org/10.1016/j.cej.2014.11.056 | |
dcterms.references | Song, J. (2015). thermoplastics and thermoplastic composites. Inequality in the Workplace, 896. https://doi.org/10.7591/j.ctt5hh0qp.3 | |
dcterms.references | Soury, E., Behravesh, A. H., Rizvi, G. M., & Jam, N. J. (2012). Rheological Investigation of WoodPolypropylene Composites in Rotational Plate Rheometer. Journal of Polymers and the Environment, 20(4), 998–1006. https://doi.org/10.1007/s10924-012-0502-x | |
dcterms.references | Spicker, C., Rudolph, N., Kühnert, I., & Aumnate, C. (2019). The use of rheological behavior to monitor the processing and service life properties of recycled polypropylene. Food Packaging and Shelf Life, 19(June 2018), 174–183. https://doi.org/10.1016/j.fpsl.2019.01.002 | |
dcterms.references | Spoljaric, S., Genovese, A., & Shanks, R. A. (2009). Polypropylene-microcrystalline cellulose composites with enhanced compatibility and properties. Composites Part A: Applied Science and Manufacturing, 40(6–7), 791–799. https://doi.org/10.1016/j.compositesa.2009.03.011 | |
dcterms.references | Stein, V., & Schemmel, T. (2020). Sustainable Rice Husk Ash-Based High-Temperature Insulating Materials. InterCeram: International Ceramic Review, 69(4–5), 30–37. https://doi.org/10.1007/s42411-020-0119-3 | |
dcterms.references | Stephen Morton, David Pencheon, and N. S., & Sustainability. (2017). Sustainable Development Goals (SDGs), and their implementation A national global framework for health, development and equity needs a systems approach at every level Stephen. British Medical Bulletin, 124(October), 81–90. https://doi.org/10.1093/bmb/ldx031 | |
dcterms.references | Suzuki, K., Homma, Y., Igarashi, Y., Okumura, H., & Yano, H. (2017). Effect of preparation process of microfibrillated cellulose-reinforced polypropylene upon dispersion and mechanical properties. Cellulose, 24(9), 3789–3801. https://doi.org/10.1007/s10570-0171355-1 | |
dcterms.references | Syduzzaman, M., Faruque, M. A. Al, Bilisik, K., & Naebe, M. (2020). Plant-based natural fibre reinforced composites: A review on fabrication, properties and applications. Coatings, 10(10), 1–34. https://doi.org/10.3390/coatings10100973 | |
dcterms.references | T.C. Mike Chung. (2001). Functionalization of Polyolefins. In academic press (Vol. 53, Issue 9). http://publications.lib.chalmers.se/records/fulltext/245180/245180.pdf%0Ahttps://hdl.handle .net/20.500.12380/245180%0Ahttp://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://d oi.org/10.1016/j.gr.2017.08.001%0Ahttp://dx.doi.org/10.1016/j.precamres.2014.12 | |
dcterms.references | Tabak, C., Keskin, S., Akbasak, T., & Ozkoc, G. (2020). Polypropylene/Spray Dried and Silane Treated Nanofibrillated Cellulose Composites. Polymer Engineering and Science, 60(2), 352361. https://doi.org/10.1002/pen.25290 | |
dcterms.references | Tajvidi, M., & Takemura, A. (2010). Thermal degradation of natural fiber-reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 23(3), 281–298. https://doi.org/10.1177/0892705709347063 | |
dcterms.references | TamásBárány;József Karger-Kocsis (1950–2018). (2019). Polypropylene handbook: Morphology, Blends and Composites. In Choice Reviews Online (Vol. 43, Issue 05). https://doi.org/10.5860/choice.43-2825 | |
dcterms.references | Thakur, V. K., Vennerberg, D., & Kessler, M. R. (2014). Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Applied Materials and Interfaces, 6(12), 9349–9356. https://doi.org/10.1021/am501726d | |
dcterms.references | Tzounis, P. N., Argyropoulou, D. V., Anogiannakis, S. D., & Theodorou, D. N. (2018). Tacticity Effect on the Conformational Properties of Polypropylene and Poly(ethylene-propylene) Copolymers. Macromolecules, 51(17), 6878–6891. https://doi.org/10.1021/acs.macromol.8b01099 | |
dcterms.references | Ummartyotin, S., & Pechyen, C. (2016). Microcrystalline-cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging. Carbohydrate Polymers, 142, 133–140. https://doi.org/10.1016/j.carbpol.2016.01.020 | |
dcterms.references | Universidad de los Andes, & Greenpeace Colombia. (2019). Situación actual de Colombia y su impacto en el medio ambiente. 14. | |
dcterms.references | Uribe, F. G. O. U. (2003). Diccionario de Metodologia de La Investigacion Cientifica. In Libro8 Editorial Limusa (Vol. 1). https://drive.google.com/file/d/1PxTICezCcbZ5vj5l9FrRXfmZ1HRNpWF_/view?fbclid=Iw AR1NpUV20GPct8wf9nn70LkLcW-z2C83JDuIUgqBTgZtql7RZg0o5V8XyNA | |
dcterms.references | V. Mazzanti, F. Mollica, N. E. K. (2015). Rheological and Mechanical Characterization of Polypropylene-Based Wood Plastic Composites. Polymer Composites, 37(12), 3460–3473. https://doi.org/10.1002/pc | |
dcterms.references | Vallejo Zamudio, L. E. (2019). El plan nacional de desarrollo 2018-2022: “Pacto por Colombia, pacto por la equidad.” Apuntes Del Cenes. https://doi.org/10.19053/01203053.v38.n68.2019.9924 | |
dcterms.references | Vesel, A., & Mozetic, M. (2010). ON THE FUNCTIONALIZATION OF POLYPROPYLENE WITH CF 4 PLASMA CREATED IN CAPACITIVELY COUPLED RF DISCHARGE (Vol. 1). | |
dcterms.references | Vineta Srebrenkoska, Gordana Bogoeva Gaceva, Maurizio Avella, M. E. E., & Gentile, and G. (2008). Recycling of polypropylene-based eco-composites. Polym Int, 55, 6. https://doi.org/10.1002/pi.2470 | |
dcterms.references | Wang, D., Yang, B., Chen, Q. T., Chen, J., Su, L. F., Chen, P., Zheng, Z. Z., Miao, J. Bin, Qian, J. S., Xia, R., & Shi, Y. (2019). A facile evaluation on melt crystallization kinetics and thermal properties of low-density polyethylene (LDPE)/Recycled polyethylene terephthalate (RPET) blends. Advanced Industrial and Engineering Polymer Research, 2(3), 126–135. https://doi.org/10.1016/j.aiepr.2019.05.002 | |
dcterms.references | Wang, K., Li, T., Xie, S., Wu, X., Huang, W., Tian, Q., Tu, C., & Yan, W. (2019). Influence of organo-sepiolite on the morphological, mechanical, and rheological properties of PP/ABS blends. Polymers, 11(9), 1–11. https://doi.org/10.3390/polym11091493 | |
dcterms.references | Wang, S., Li, H., Zou, S., & Zhang, G. (2020). Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energy and Buildings, 226, 110358. https://doi.org/10.1016/j.enbuild.2020.110358 | |
dcterms.references | Waste, E. U., Directive, F., & Birli, A. (2015). 3R CONCEPT-REDUCE-REUSE- RECYCLE Waste. In Energy Efficient Solutions For Built Environments. | |
dcterms.references | Wibisono, Y., Fadila, C. R., Saiful, S., & Bilad, M. R. (2020). Facile approaches of polymeric face masks reuse and reinforcements for micro-aerosol droplets and viruses filtration: A review. Polymers, 12(11), 1–18. https://doi.org/10.3390/polym12112516 | |
dcterms.references | Wu, H., Xu, D., Zhou, Y., Gao, C., Guo, J., He, W., He, Y., & Qin, S. (2020). Tung Oil Anhydride Modified Hemp Fiber/Polypropylene Composites: The Improved Toughness, Thermal Stability and Rheological Property. Fibers and Polymers, 21(9), 2084–2091. https://doi.org/10.1007/s12221-020-1157-1 | |
dcterms.references | Wu, H., Xu, D., Zhou, Y., Guo, J., He, W., He, Y., Yi, Y., & Qin, S. (2021). The Improved Mechanical and Thermal Properties of Hemp Fibers Reinforced Polypropylene Composites with Dodecyl Bromide Modification. Fibers and Polymers, 22(10), 2869–2877. https://doi.org/10.1007/s12221-021-0127-6 | |
dcterms.references | WWF. (2020). Transparent 2020. June. | |
dcterms.references | Yalcin, D. (2021). Tensile Testing Concepts & Definitions. ResearchGate, May, 1–12. | |
dcterms.references | Yashas Gowda, T. G., Sanjay, M. R., Subrahmanya Bhat, K., Madhu, P., Senthamaraikannan, P., Yogesha, B., & Pham, D. (2018). Polymer matrix-natural fiber composites: An overview. Cogent Engineering, 5(1), 1446667. https://doi.org/10.1080/23311916.2018.1446667 | |
dcterms.references | Yazdani-Pedram Zobeiri, Mehrdad; Calderón del Río, Katia Romina; Quijada Abarca, J. (2000). Functionalization of polypropylene in solution through grafting with monomethyl itaconate. 45, 269–282. https://doi.org/0366-1644 | |
dcterms.references | Yeh, S. K., Hsieh, C. C., Chang, H. C., Yen, C. C. C., & Chang, Y. C. (2015). Synergistic effect of coupling agents and fiber treatments on mechanical properties and moisture absorption of polypropylene-rice husk composites and their foam. Composites Part A: Applied Science and Manufacturing, 68, 313–322. https://doi.org/10.1016/j.compositesa.2014.10.019 | |
dcterms.references | Yuanita, E., Pratama, J. N., & Chalid, M. (2017). Preparation of Micro Fibrillated Cellulose Based on Arenga Pinnata “Ijuk” Fibre for Nucleating Agent of Polypropylene: Characterization, Optimization and Feasibility Study. Macromolecular Symposia, 371(1), 61–68. https://doi.org/10.1002/masy.201600039 | |
dcterms.references | Yunus, M. A. (2019). Extraction Cellulose From Rice Husk. Jurnal Akta Kimia Indonesia (Indonesia Chimica Acta), 12(2), 79. https://doi.org/10.20956/ica.v12i2.6559 | |
dcterms.references | Yunus, M. A., Raya, I., & Tuara, Z. I. (2019). Synthesis cellulose from rice husk. Indonesia Chimica Acta, 12(2), 79–83. | |
dcterms.references | Zarges, J. C., Minkley, D., Feldmann, M., & Heim, H. P. (2017). Fracture toughness of injection molded, man-made cellulose fiber reinforced polypropylene. Composites Part A: Applied Science and Manufacturing, 98, 147–158. https://doi.org/10.1016/j.compositesa.2017.03.022 | |
dcterms.references | Zhang, Z., Wan, D., Xing, H., Zhang, Z., Tan, H., Wang, L., Zheng, J., An, Y., & Tang, T. (2012). A new grafting monomer for synthesizing long chain branched polypropylene through melt radical reaction. Polymer, 53(1), 121–129. https://doi.org/10.1016/j.polymer.2011.11.033 | |
dcterms.references | Zhang, Z., Zhang, R., Huang, Y., Lei, J., Chen, Y. H., Tang, J. H., & Li, Z. M. (2014). Efficient utilization of atactic polypropylene in its isotactic polypropylene blends via “structuring” processing. Industrial and Engineering Chemistry Research, 53(24), 10144–10154. https://doi.org/10.1021/ie5012867 | |
dcterms.references | Zurina, M., Ismail, H., & Bakar, A. A. (2004). Rice Husk Powder – Filled Polystyrene / Styrene Butadiene Rubber Blends. Journal of Applied Polymer Science, Vol. 92, 3320–3332 (2004), 92(M), 3320–3332. | |
dcterms.references | 刘会. (n.d.). CN109021398A - A kind of high-toughness high-strength polypropylene plastics and preparation method thereof - Google Patents. | |
dcterms.references | 刘桂成杨维曦马俊杰. (n.d.). CN107841034 Modified polypropylene composite material with KT1 as compatibilizer. | |
dcterms.references | 汪龙汪彪. (n.d.). A kind of nano-cellulose reinforced polypropylene foamed material and preparation method thereof. | |
dc.description.notes | Archivo Medios Electrónicos | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Químico Industrial | spa |
dc.identifier.instname | instname:Universidad Francisco de Paula Santander | |
dc.identifier.reponame | reponame:Repositorio Digital UFPS | |
dc.identifier.repourl | repourl:https://repositorio.ufps.edu.co/ | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | San José de Cúcuta | spa |
dc.publisher.program | Química Industrial | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.lemb | Polipropileno reciclado | spa |
dc.subject.lemb | Celulosa Cristalina | spa |
dc.subject.lemb | Materiales compuestos | spa |
dc.subject.lemb | Acoplamiento | spa |
dc.subject.lemb | Propiedades | spa |
dc.subject.proposal | Polipropileno reciclado | spa |
dc.subject.proposal | Materiales compuestos | spa |
dc.subject.proposal | Celulosa cristalina | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TP | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dc.identifier.signature | TQI V00002/2023 | spa |
dc.contributor.jury | Reyes Gómez, Sonia Esperanza | |
dc.contributor.jury | Parra Llanos, John Wilmer | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 |