Mostrar el registro sencillo del ítem
Vehículos aéreos no tripulados como alternativa de solución a los retos de innovación en diferentes campos de aplicación
Unmanned aerial vehicles as an alternative solution to innovation challenges in different fields of application: a literature reviewoperational area of a health center
dc.contributor.author | Eslava Pedraza, Jeison Eduardo | |
dc.contributor.author | Martinez Sarmiento, Franyer Adrian | |
dc.contributor.author | Soto Vergel, Angelo Joseph | |
dc.contributor.author | Guevara Ibarra, Dinael | |
dc.contributor.author | Vera Rozo, Edwin Jose | |
dc.date.accessioned | 2021-11-09T00:20:27Z | |
dc.date.available | 2021-11-09T00:20:27Z | |
dc.date.issued | 2020-12-14 | |
dc.identifier.issn | 2344-8652 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/784 | |
dc.description.abstract | RIdentificar los principales campos de aplicación donde los vehículos aéreos no tripulados son una alternativa de solución innovadora, así como las tecnologías implementadas en ellos, articulando información fragmentada. Metodología: Mediante la herramienta Tree of Science se desarrolló una búsqueda inicial en Web of Science y con base en la información obtenida se complementó con el modelo de revisión sistemática tomado como referencia las bases de datos Scopus, ScienceDirec, IEEE y Web of Science aplicando una selección y descarte de información de las diferentes investigaciones relacionadas. Resultados y Conclusiones: Se seleccionaron un total de 81 artículos que fueron analizados y estudiados acorde a las aplicaciones de enfoque donde los vehículos aéreos no tripulados han presentado aportes, soluciones y alternativas a las labores diarias implementadas en áreas como agricultura, ambiente, militar, logística, mapeo y geociencias. Los vehículos aéreos más utilizados como alternativa de solución son los multirrotor que obtuvieron un 58.82 % de participación, seguido de los ala fija o flexible con un 31.76 %. Además, se encontró que el 91.36 % adaptan cámaras en estas aeronaves para el desarrollo de sus estudios. Finalmente, se observó que el área de la logística, en términos generales, es un tema potencial para estudios futuros. | spa |
dc.description.abstract | identify the main fields of application in which unmanned aerial vehicle are an innovative solution alternative, as well as the technologies implemented in them, articulating fragmented information. Methodology: by the tool Tree of Science was developed a starting research in Web of Science and based on the acquired data was complemented with the review system model took as reference Scopus, ScienceDirect, IEEE and Web of Science databases, applying a selection and discarding of information from the different related investigations. Results and conclusions: It were selected a total of 81 articles that were analyzed and studied according to the approach applications where unmanned aerial vehicles have presented contributions, solutions and alternatives to daily tasks implemented in areas like agriculture, environment, military, logistic, mapping and geoscience. The most widely used air vehicles as an alternative solution are multirotor vehicles, which obtained a 58.82% share, followed by fixed or flexible wings with 31.76%. In addition, it was found that 91.36 % adapt cameras on these aircraft for the development of their studies. Finally, it was observed that the area of logistics, in general terms, is a potential topic for future studies. | eng |
dc.format.extent | 18 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Revista Investigación e Innovación en Ingenierías | spa |
dc.relation.ispartof | Investigación e Innovación en Ingenierías | |
dc.rights | Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0. La revista Investigación e Innovación en Ingenierías respeta los derechos morales de cada autor, sin embargo los autores ceden los derechos patrimoniales de sus artículos, y al mismo tiempo certifican a través de una carta que su trabajo es inédito y no ha sido publicado anteriormente. | spa |
dc.source | https://revistas.unisimon.edu.co/index.php/innovacioning/article/view/4017 | spa |
dc.title | Vehículos aéreos no tripulados como alternativa de solución a los retos de innovación en diferentes campos de aplicación | spa |
dc.title | Unmanned aerial vehicles as an alternative solution to innovation challenges in different fields of application: a literature reviewoperational area of a health center | eng |
dc.type | Artículo de revista | spa |
dcterms.references | B. D. Song, K. Park, and J. Kim, “Persistent UAV delivery logistics: MILP formulation and efficient heuristic,” Comput. Ind. Eng., vol. 120, no. February 2017, pp. 418–428, 2018, DOI: https://doi. org/10.1016/j.cie.2018.05.013. | spa |
dcterms.references | L. D. M. Lam, A. Tang, and J. Grundy, “Heuristics-based indoor positioning systems: a systematic literature review,” J. Locat. Based Serv., vol. 10, no. 3, pp. 178–211, 2016, DOI: https://doi.org/10.1080/ 17489725.2016.1232842. | spa |
dcterms.references | S. Hayat, E. Yanmaz, and R. Muzaffar, “Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint,” IEEE Commun. Surv. Tutorials, vol. 18, no. 4, pp. 2624– 2661, 2016, DOI: https://doi.org/10.1109/COMST.2016.2560343. | spa |
dcterms.references | D. Popescu, F. Stoican, L. Ichim, G. Stamatescu, and C. Dragana, “Collaborative UAV-WSN system for data acquisition and processing in agriculture,” Proc. 2019 10th IEEE Int. Conf. Intell. Data Acquis. Adv. Comput. Syst. Technol. Appl. IDAACS 2019, vol. 1, pp. 519–524, 2019, DOI: https://doi.org/10.1109/ IDAACS.2019.8924424. | spa |
dcterms.references | T. Niedzielski, “Applications of Unmanned Aerial Vehicles in Geosciences: Introduction,” no. November, pp. 1–4, 2019, DOI: https://doi.org/10.1007/978-3-030-03171-8_1. | spa |
dcterms.references | P. V. M. Maia, R. M. Santos, J. R. P. Vaz, M. O. Silva, and E. F. Lins, “Experimental study of three different airfoils applied to diffuser-augmented wind turbines,” J. Urban Environ. Eng., vol. 12, no. 1, pp. 147–153, 2018, DOI: https://doi.org/10.4090/juee. | spa |
dcterms.references | D. Lopez and Joana Andrea, “Marketing en Redes Sociales Online como herramienta de marketing Emprendedor,” Univeridad Nacional de Colombia, 2016. | spa |
dcterms.references | J. C. Marín, S. Robledo, and N. D. Duque, “Marketing emprendedor: una perspectiva cronologica utilizando tree of science,” Civilizar Empres. y Econ., vol. 13, no. 1, pp. 113–123, 2017. | spa |
dcterms.references | J. Toro and M. D. P. Rodríguez, “Formación en ética en las organizaciones: Revisión de la literatura,” Inf. Tecnol., vol. 28, no. 2, pp. 167–180, 2017, DOI: https://doi.org/10.4067/S0718-07642017000200018. | spa |
dcterms.references | C. Manterola, P. Astudillo, E. Arias, and N. Claros, “Revisiones sistemáticas de la literatura. Qué se debe saber acerca de ellas,” Cir. Esp., vol. 91, no. 3, pp. 149–155, 2013, DOI: https://doi.org/10.1016/j. ciresp.2011.07.009. | spa |
dcterms.references | E. L. García Alba, “Características y utilidad de las Revisiones Sistemáticas o Meta-análisis,” Rev. Científica Cienc. Médica, vol. 16, no. 2, pp. 4–5, 2013. | spa |
dcterms.references | J. Primicerio et al., “A flexible unmanned aerial vehicle for precision agriculture,” Precis. Agric., vol. 13, no. 4, pp. 517–523, 2012, DOI: https://doi.org/10.1007/s11119-012-9257-6. | spa |
dcterms.references | P. Hu, W. Guo, S. C. Chapman, Y. Guo, and B. Zheng, “Pixel size of aerial imagery constrains the applications of unmanned aerial vehicle in crop breeding,” ISPRS J. Photogramm. Remote Sens., vol. 154, no. June 2018, pp. 1–9, 2019, DOI: https://doi.org/10.1016/j.isprsjprs.2019.05.008. | spa |
dcterms.references | N. Chebrolu, T. Labe, and C. Stachniss, “Robust long-term registration of UAV images of crop fields for precision agriculture,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3097–3104, 2018, DOI: https://doi. org/10.1109/LRA.2018.2849603. | spa |
dcterms.references | S. Bhandari, A. Raheja, R. L. Green, and D. Do, “Towards collaboration between unmanned aerial and ground vehicles for precision agriculture,” Auton. Air Gr. Sens. Syst. Agric. Optim. Phenotyping II, vol. 10218, p. 1021806, 2017, DOI: https://doi.org/10.1117/12.2262049. | spa |
dcterms.references | X. Q. Zhang et al., “Application of Multi-rotor Unmanned Aerial Vehicle Application in Management of Stem Borer (Lepidoptera) in Sugarcane,” Sugar Tech, vol. 21, no. 5, pp. 847–852, 2019, DOI: https://doi. org/10.1007/s12355-018-0695-y. | spa |
dcterms.references | P. Venkata Subba Rao and S. R. Gorantla, “Design and Modelling of anAffordable UAV Based Pesticide Sprayer in Agriculture Applications,” 5th Int. Conf. Electr. Energy Syst. ICEES 2019, vol. 360, no. February, pp. 1–4, 2019, DOI: https://doi.org/10.1109/ICEES.2019.8719237. | spa |
dcterms.references | K. Kuru, D. Ansell, W. Khan, and H. Yetgin, “Analysis and Optimization of Unmanned Aerial Vehicle Swarms in Logistics: An Intelligent Delivery Platform,” IEEE Access, vol. 7, no. c, pp. 15804–15831, 2019, DOI: https://doi.org/10.1109/ACCESS.2019.2892716. | spa |
dcterms.references | J. Lee et al., “A mission management system for complex aerial logistics by multiple unmanned aerial vehicles in MBZIRC 2017,” J. F. Robot., vol. 36, no. 5, pp. 919–939, 2019, DOI: https://doi.org/10.1002/ rob.21860. | spa |
dcterms.references | H. Ni, X. Deng, B. Gong, and P. Wang, “Design of regional logistics system based on unmanned aerial vehicle,” Proc. 2018 IEEE 7th Data Driven Control Learn. Syst. Conf. DDCLS 2018, pp. 1045–1051, 2018, DOI: https://doi.org/10.1109/DDCLS.2018.8515965. | spa |
dcterms.references | C. Sutheerakul, N. Kronprasert, M. Kaewmoracharoen, and P. Pichayapan, “Application of Unmanned Aerial Vehicles to Pedestrian Traffic Monitoring and Management for Shopping Streets,” Transp. Res. Procedia, vol. 25, pp. 1717–1734, 2017, DOI: https://doi.org/10.1016/j.trpro.2017.05.131. | spa |
dcterms.references | M. Golabi, S. M. Shavarani, and G. Izbirak, “An edge-based stochastic facility location problem in UAVsupported humanitarian relief logistics: a case study of Tehran earthquake,” Nat. Hazards, vol. 87, no. 3, pp. 1545–1565, 2017, DOI: https://doi.org/10.1007/s11069-017-2832-4. | spa |
dcterms.references | A. Vehicles, “Current and future UAV military users and applications,” Air Sp. Eur., vol. 1, no. 5–6, pp. 51–58, 1999, DOI: https://doi.org/10.1016/s1290-0958(00)88871-1. | spa |
dcterms.references | M. A. Ma’Sum et al., “Simulation of intelligent Unmanned Aerial Vehicle (UAV) for military surveillance,” 2013 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2013, pp. 161–166, 2013, DOI: https://doi.org/10.1109/ ICACSIS.2013.6761569. | spa |
dcterms.references | M. Zhang, H. Li, G. Xia, W. Zhao, S. Ren, and C. Wang, “Research on the Application of Deep Learning Target Detection of Engineering Vehicles in the Patrol and Inspection for Military Optical Cable Lines by UAV,” Proc. - 2018 11th Int. Symp. Comput. Intell. Des. Isc. 2018, vol. 1, pp. 97–101, 2018, DOI: https:// doi.org/10.1109/ISCID.2018.00029. | spa |
dcterms.references | S. J. Levulis, P. R. DeLucia, and S. Y. Kim, “Effects of Touch, Voice, and Multimodal Input, and Task Load on Multiple-UAV Monitoring Performance During Simulated Manned-Unmanned Teaming in a Military Helicopter,” Hum. Factors, vol. 60, no. 8, pp. 1117–1129, 2018, DOI: https://doi. org/10.1177/0018720818788995. | spa |
dcterms.references | D. Orfanus, E. P. De Freitas, and F. Eliassen, “Self-Organization as a Supporting Paradigm for Military UAV Relay Networks,” IEEE Commun. Lett., vol. 20, no. 4, pp. 804–807, 2016, DOI: https://doi.org/10.1109/ LCOMM.2016.2524405. | spa |
dcterms.references | J. E. Márquez Díaz, “Seguridad metropolitana mediante el uso coordinado de Drones,” Ing. USBMed, vol. 9, no. 1, p. 39, 2018, DOI: https://doi.org/10.21500/20275846.3299. | spa |
dcterms.references | R. Kuntz Rangel, J. L. Freitas, and V. Antonio Rodrigues, “Development of a Multipurpose Hydro Environmental Tool using Swarms, UAV and USV,” IEEE Aerosp. Conf. Proc., vol. 2019-March, 2019, DOI: https://doi.org/10.1109/AERO.2019.8741624. | spa |
dcterms.references | M. A. Boon, A. P. Drijfhout, and S. Tesfamichael, “Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: A case study,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 42, no. 2W6, pp. 47–54, 2017, DOI: https://doi.org/10.5194/isprs-archives-XLII2-W6-47-2017. | spa |
dcterms.references | Y. Lu, D. Macias, Z. S. Dean, N. R. Kreger, and P. K. Wong, “A UAV-Mounted Whole Cell Biosensor System for Environmental Monitoring Applications,” IEEE Trans. Nanobioscience, vol. 14, no. 8, pp. 811–817, 2015, DOI: https://doi.org/10.1109/TNB.2015.2478481. | spa |
dcterms.references | K. F. Flynn and S. C. Chapra, “Remote sensing of submerged aquatic vegetation in a shallow nonturbid river using an unmanned aerial vehicle,” Remote Sens., vol. 6, no. 12, pp. 12815–12836, 2014, DOI: https://doi.org/10.3390/rs61212815. | spa |
dcterms.references | J. Witczuk, S. Pagacz, A. Zmarz, and M. Cypel, “Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests - preliminary results,” Int. J. Remote Sens., vol. 39, no. 15–16, pp. 5504–5521, 2018, DOI: https://doi.org/10.1080/01431161.2017.1390621. | spa |
dcterms.references | R. Woellner and T. C. Wagner, “Saving species, time and money: Application of unmanned aerial vehicles (UAVs) for monitoring of an endangered alpine river specialist in a small nature reserve,” Biol. Conserv., vol. 233, no. October 2018, pp. 162–175, 2019, DOI: https://doi.org/10.1016/j.biocon.2019.02.037 | spa |
dcterms.references | L. Mead and M. Arthur, “Environmental condition in British moorlands: quantifying the life cycle of Calluna vulgaris using UAV aerial imagery,” Int. J. Remote Sens., vol. 41, no. 2, pp. 573–583, 2020, DOI: https://doi.org/10.1080/2150704X.2019.1646931. | spa |
dcterms.references | J. N. Hird et al., “Use of unmanned aerial vehicles for monitoring recovery of forest vegetation on petroleum well sites,” Remote Sens., vol. 9, no. 5, 2017, DOI: https://doi.org/10.3390/rs9050413. | spa |
dcterms.references | S. Jayathunga, T. Owari, and S. Tsuyuki, “The use of fixed–wing UAV photogrammetry with LiDAR DTM to estimate merchantable volume and carbon stock in living biomass over a mixed conifer– broadleaf forest,” Int. J. Appl. Earth Obs. Geoinf., vol. 73, no. August, pp. 767–777, 2018, DOI: https://doi. org/10.1016/j.jag.2018.08.017. | spa |
dcterms.references | V. Sherstjuk and M. Zharikova, “Fire-front recognition in UAV-based forest-fire monitoring system using fuzzy rough soft sets,” 2019 IEEE 2nd Ukr. Conf. Electr. Comput. Eng. UKRCON 2019 - Proc., pp. 1091–1096, 2019, DOI: https://doi.org/10.1109/UKRCON.2019.8879829. | spa |
dcterms.references | M. N. Saadat and M. N. Husen, “An application framework for forest fire and haze detection with data acquisition using unmanned aerial vehicle,” ACM Int. Conf. Proceeding Ser., 2018, DOI: https://doi. org/10.1145/3164541.3164624. | spa |
dcterms.references | J. Fernández-Hernandez, D. González-Aguilera, P. Rodríguez-Gonzálvez, and J. Mancera-Taboada, “Image-Based Modelling from Unmanned Aerial Vehicle (UAV) Photogrammetry: An Effective, LowCost Tool for Archaeological Applications,” Archaeometry, vol. 57, no. 1, pp. 128–145, 2015, DOI: https:// doi.org/10.1111/arcm.12078. | spa |
dcterms.references | A. Y. M. Lin, A. Novo, S. Har-Noy, N. D. Ricklin, and K. Stamatiou, “Combining GeoEye-1 Satellite Remote Sensing, UAV Aerial Imaging, and Geophysical Surveys in Anomaly Detection Applied to Archaeology,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 4, no. 4, pp. 870–876, 2011, DOI: https://doi. org/10.1109/JSTARS.2011.2143696. | spa |
dcterms.references | A. A. Doshi, A. J. Postula, A. Fletcher, and S. P. N. Singh, “Development of micro-UAV with integrated motion planning for open-cut mining surveillance,” Microprocess. Microsyst., vol. 39, no. 8, pp. 829– 835, 2015, DOI: https://doi.org/10.1016/j.micpro.2015.07.008. | spa |
dcterms.references | L. Ge, X. Li, and A. H. M. Ng, “UAV for mining applications: A case study at an open-cut mine and a longwall mine in New South Wales, Australia,” Int. Geosci. Remote Sens. Symp., vol. 2016-Novem, no. 1, pp. 5422–5425, 2016, DOI: https://doi.org/10.1109/IGARSS.2016.7730412. | spa |
dcterms.references | Y. Fang, Z. Hu, L. Xu, A. Wong, and D. A. Clausi, “Estimation Of Iron Concentration In Soil Of A Mining Area From Uav-Based Hyperspectral Imagery,” in 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2019, pp. 1–5, DOI: https://doi.org/10.1109/ WHISPERS.2019.8920973. | spa |
dcterms.references | A. Ranjan, B. Panigrahi, H. B. Sahu, and P. Misra, “SkyHelp: Leveraging UAVs for emergency communication support in deep open pit mines,” 2018 10th Int. Conf. Commun. Syst. Networks, COMSNETS 2018, vol. 2018-Janua, no. 1, pp. 546–548, 2018, DOI: https://doi.org/10.1109/COMSNETS.2018.8328269. | spa |
dcterms.references | O. G. Ajayi, M. Palmer, and A. A. Salubi, “Modelling farmland topography for suitable site selection of dam construction using unmanned aerial vehicle (UAV) photogrammetry,” Remote Sens. Appl. Soc. Environ., vol. 11, no. July, pp. 220–230, 2018, DOI: https://doi.org/10.1016/j.rsase.2018.07.007. | spa |
dcterms.references | K. N. Tahar, A. Ahmad, W. A. A. Wan Mohd Akib, and W. M. N. Wan Mohd, “Aerial mapping using autonomous fixed-wing unmanned aerial vehicle,” Proc. - 2012 IEEE 8th Int. Colloq. Signal Process. Its Appl. CSPA 2012, pp. 164–168, 2012, DOI: https://doi.org/10.1109/CSPA.2012.6194711. | spa |
dcterms.references | T. C. Su, “Multispectral sensors carried on unmanned aerial vehicle (UAV) for trophic state mapping of the small reservoir in Kinmen, Taiwan,” Int. Geosci. Remote Sens. Symp., vol. 2015-Novem, pp. 5348– 5351, 2015, DOI: https://doi.org/10.1109/IGARSS.2015.7327043. | spa |
dcterms.references | O. Wigmore, B. Mark, J. McKenzie, M. Baraer, and L. Lautz, “Sub-metre mapping of surface soil moisture in proglacial valleys of the tropical Andes using a multispectral unmanned aerial vehicle,” Remote Sens. Environ., vol. 222, no. January 2018, pp. 104–118, 2019, DOI: https://doi.org/10.1016/j. rse.2018.12.024. | spa |
dcterms.references | F. H. Yeh, C. J. Huang, J. Y. Han, and L. Ge, “Modeling Slope Topography Using Unmanned Aerial Vehicle Image Technique,” MATEC Web Conf., vol. 147, pp. 1–6, 2018, DOI: https://doi.org/10.1051/ matecconf/201814707002. | spa |
dcterms.references | M. Yu, Y. Huang, J. Zhou, and L. Mao, “Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion,” Environ. Earth Sci., vol. 76, no. 15, 2017, DOI: https://doi.org/10.1007/s12665-017-6860-x | spa |
dcterms.references | S. J. Hong, Y. Han, S. Y. Kim, A. Y. Lee, and G. Kim, “Application of deep-learning methods to bird detection using unmanned aerial vehicle imagery,” Sensors (Switzerland), vol. 19, no. 7, pp. 1–16, 2019, DOI: https://doi.org/10.3390/s19071651. | spa |
dcterms.references | P. J. Zarco-Tejada, L. Suárez, J. A. J. Berni, E. Fereres, J. A. J. Berni, and P. J. Zarco-Tejada, “Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle Improved Evapotranspiration using Unmanned Aerial Vehicles View project High throughput and remote trait measurement View project Thermal and Nar,” Ieee Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 722–738, 2009, DOI: https://doi.org/10.1109/TGRS.2008.2010457. | spa |
dcterms.references | V. Trukhachev, S. Oliinyk, T. Lesnyak, and N. Zlyidnev, “Application of unmanned aerial vehicles for remote estimation of pasture fertility while growing Dzhalginsky merino sheep,” Eng. Rural Dev., vol. 18, no. 1, pp. 1673–1679, 2019, DOI: https://doi.org/10.22616/ERDev2019.18.N465. | spa |
dcterms.references | S. S. Esfahlani, “Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection,” J. Ind. Inf. Integr., vol. 15, no. November 2018, pp. 42–49, 2019, DOI: https://doi. org/10.1016/j.jii.2019.04.006. | spa |
dcterms.references | C. Liu, X. Liu, X. Peng, E. Wang, and S. Wang, “Application of 3D-DDA integrated with unmanned aerial vehicle–laser scanner (UAV-LS) photogrammetry for stability analysis of a blocky rock mass slope,” Landslides, vol. 16, no. 9, pp. 1645–1661, 2019, DOI: https://doi.org/10.1007/s10346-019-01196-6. | spa |
dcterms.references | S. Siebert and J. Teizer, “Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system,” Autom. Constr., vol. 41, pp. 1–14, 2014, DOI: https://doi.org/10.1016/j. autcon.2014.01.004. | spa |
dcterms.references | T. C. Su and H. T. Chou, “Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu reservoir in Kinmen, Taiwan,” Remote Sens., vol. 7, no. 8, pp. 10078–10097, 2015, DOI: https://doi.org/10.3390/rs70810078. | spa |
dcterms.references | D. G. Schmale III, B. R. Dingus, and C. Reinholtz, “Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields,” J. F. Robot., vol. 25, no. 3, pp. 133–147, Mar. 2008, DOI: https://doi.org/10.1002/rob.20232. | spa |
dcterms.references | R. Avellaneda, S. Cabrera, P. A. Martínez, y C. G. Donoso Albarracín, "Apoyo tecnológico para la fidelización y captación de nuevos clientes por medio de una aplicación móvil", Investigación e Innovación en Ingenierías, vol. 5, n.º 1, pp. 92-101, 2017. DOI: https://doi.org/10.17081/invinno.5.1.2618 | spa |
dcterms.references | D. Henao - león, A. Camilo Báez - Alarcón, y J. Bethsaid Pedroza - Rojas, “Metodología para determinar la viabilidad de generación de energía eléctrica por medio del recurso eólico”, Revista Investigación e Innovación en Ingenierías, vol. 6, n°. 2, 2018. DOI: https://doi.org/10.17081/invinno.6.2.3108 | spa |
dcterms.references | M. Piras ,G. Taddia ,M. G. Forno ,M. Gattiglio ,I. Aicardi ,P. Dabove, et al., “Detailed geological mapping in mountain areas using an unmanned aerial vehicle: application to the Rodoretto Valley, NW Italian Alps,” Geomatics, Nat. Hazards Risk, vol. 8, no. 1, pp. 137–149, 2017, DOI: https://doi.org/10.1080/1947 5705.2016.1225228. | spa |
dc.publisher.place | Colombia | spa |
dc.relation.citationedition | Vol.9 No.1.(2021) | spa |
dc.relation.citationendpage | 166 | spa |
dc.relation.citationissue | 1(2021) | spa |
dc.relation.citationstartpage | 149 | spa |
dc.relation.citationvolume | 9 | spa |
dc.relation.cites | Eslava Pedraza, J. E., Martínez Sarmiento, F. A., Soto Vergel, Ángelo J., Vera Rozo , E. J., & Guevara Ibarra, D. (2021). Vehículos aéreos no tripulados como alternativa de solución a los retos de innovación en diferentes campos de aplicación: una revisión de la literatura. Investigación E Innovación En Ingenierías, 9(1), 149-166. https://doi.org/10.17081/invinno.9.1.4017 | |
dc.relation.ispartofjournal | Revista Investigación e Innovación en Ingenierías | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Vehículo aéreo no tripulado | spa |
dc.subject.proposal | UAV | spa |
dc.subject.proposal | aplicaciones | spa |
dc.subject.proposal | revisión sistemática | spa |
dc.subject.proposal | ala fija | spa |
dc.subject.proposal | multirrotor | spa |
dc.subject.proposal | Unmanned aerial vehicle | eng |
dc.subject.proposal | applications | eng |
dc.subject.proposal | Tree of Science | eng |
dc.subject.proposal | systematic review | eng |
dc.subject.proposal | fixed wing | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |