Mostrar el registro sencillo del ítem


Unmanned aerial vehicles as an alternative solution to innovation challenges in different fields of application: a literature reviewoperational area of a health center

dc.contributor.authorEslava Pedraza, Jeison Eduardo
dc.contributor.authorMartinez Sarmiento, Franyer Adrian
dc.contributor.authorSoto Vergel, Angelo Joseph
dc.contributor.authorGuevara Ibarra, Dinael
dc.contributor.authorVera Rozo, Edwin Jose
dc.date.accessioned2021-11-09T00:20:27Z
dc.date.available2021-11-09T00:20:27Z
dc.date.issued2020-12-14
dc.identifier.issn2344-8652
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/784
dc.description.abstractRIdentificar los principales campos de aplicación donde los vehículos aéreos no tripulados son una alternativa de solución innovadora, así como las tecnologías implementadas en ellos, articulando información fragmentada. Metodología: Mediante la herramienta Tree of Science se desarrolló una búsqueda inicial en Web of Science y con base en la información obtenida se complementó con el modelo de revisión sistemática tomado como referencia las bases de datos Scopus, ScienceDirec, IEEE y Web of Science aplicando una selección y descarte de información de las diferentes investigaciones relacionadas. Resultados y Conclusiones: Se seleccionaron un total de 81 artículos que fueron analizados y estudiados acorde a las aplicaciones de enfoque donde los vehículos aéreos no tripulados han presentado aportes, soluciones y alternativas a las labores diarias implementadas en áreas como agricultura, ambiente, militar, logística, mapeo y geociencias. Los vehículos aéreos más utilizados como alternativa de solución son los multirrotor que obtuvieron un 58.82 % de participación, seguido de los ala fija o flexible con un 31.76 %. Además, se encontró que el 91.36 % adaptan cámaras en estas aeronaves para el desarrollo de sus estudios. Finalmente, se observó que el área de la logística, en términos generales, es un tema potencial para estudios futuros.spa
dc.description.abstractidentify the main fields of application in which unmanned aerial vehicle are an innovative solution alternative, as well as the technologies implemented in them, articulating fragmented information. Methodology: by the tool Tree of Science was developed a starting research in Web of Science and based on the acquired data was complemented with the review system model took as reference Scopus, ScienceDirect, IEEE and Web of Science databases, applying a selection and discarding of information from the different related investigations. Results and conclusions: It were selected a total of 81 articles that were analyzed and studied according to the approach applications where unmanned aerial vehicles have presented contributions, solutions and alternatives to daily tasks implemented in areas like agriculture, environment, military, logistic, mapping and geoscience. The most widely used air vehicles as an alternative solution are multirotor vehicles, which obtained a 58.82% share, followed by fixed or flexible wings with 31.76%. In addition, it was found that 91.36 % adapt cameras on these aircraft for the development of their studies. Finally, it was observed that the area of logistics, in general terms, is a potential topic for future studies.eng
dc.format.extent18 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherRevista Investigación e Innovación en Ingenieríasspa
dc.relation.ispartofInvestigación e Innovación en Ingenierías
dc.rightsEsta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0. La revista Investigación e Innovación en Ingenierías respeta los derechos morales de cada autor, sin embargo los autores ceden los derechos patrimoniales de sus artículos, y al mismo tiempo certifican a través de una carta que su trabajo es inédito y no ha sido publicado anteriormente.spa
dc.sourcehttps://revistas.unisimon.edu.co/index.php/innovacioning/article/view/4017spa
dc.titleVehículos aéreos no tripulados como alternativa de solución a los retos de innovación en diferentes campos de aplicaciónspa
dc.titleUnmanned aerial vehicles as an alternative solution to innovation challenges in different fields of application: a literature reviewoperational area of a health centereng
dc.typeArtículo de revistaspa
dcterms.referencesB. D. Song, K. Park, and J. Kim, “Persistent UAV delivery logistics: MILP formulation and efficient heuristic,” Comput. Ind. Eng., vol. 120, no. February 2017, pp. 418–428, 2018, DOI: https://doi. org/10.1016/j.cie.2018.05.013.spa
dcterms.referencesL. D. M. Lam, A. Tang, and J. Grundy, “Heuristics-based indoor positioning systems: a systematic literature review,” J. Locat. Based Serv., vol. 10, no. 3, pp. 178–211, 2016, DOI: https://doi.org/10.1080/ 17489725.2016.1232842.spa
dcterms.referencesS. Hayat, E. Yanmaz, and R. Muzaffar, “Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint,” IEEE Commun. Surv. Tutorials, vol. 18, no. 4, pp. 2624– 2661, 2016, DOI: https://doi.org/10.1109/COMST.2016.2560343.spa
dcterms.referencesD. Popescu, F. Stoican, L. Ichim, G. Stamatescu, and C. Dragana, “Collaborative UAV-WSN system for data acquisition and processing in agriculture,” Proc. 2019 10th IEEE Int. Conf. Intell. Data Acquis. Adv. Comput. Syst. Technol. Appl. IDAACS 2019, vol. 1, pp. 519–524, 2019, DOI: https://doi.org/10.1109/ IDAACS.2019.8924424.spa
dcterms.referencesT. Niedzielski, “Applications of Unmanned Aerial Vehicles in Geosciences: Introduction,” no. November, pp. 1–4, 2019, DOI: https://doi.org/10.1007/978-3-030-03171-8_1.spa
dcterms.referencesP. V. M. Maia, R. M. Santos, J. R. P. Vaz, M. O. Silva, and E. F. Lins, “Experimental study of three different airfoils applied to diffuser-augmented wind turbines,” J. Urban Environ. Eng., vol. 12, no. 1, pp. 147–153, 2018, DOI: https://doi.org/10.4090/juee.spa
dcterms.referencesD. Lopez and Joana Andrea, “Marketing en Redes Sociales Online como herramienta de marketing Emprendedor,” Univeridad Nacional de Colombia, 2016.spa
dcterms.referencesJ. C. Marín, S. Robledo, and N. D. Duque, “Marketing emprendedor: una perspectiva cronologica utilizando tree of science,” Civilizar Empres. y Econ., vol. 13, no. 1, pp. 113–123, 2017.spa
dcterms.referencesJ. Toro and M. D. P. Rodríguez, “Formación en ética en las organizaciones: Revisión de la literatura,” Inf. Tecnol., vol. 28, no. 2, pp. 167–180, 2017, DOI: https://doi.org/10.4067/S0718-07642017000200018.spa
dcterms.referencesC. Manterola, P. Astudillo, E. Arias, and N. Claros, “Revisiones sistemáticas de la literatura. Qué se debe saber acerca de ellas,” Cir. Esp., vol. 91, no. 3, pp. 149–155, 2013, DOI: https://doi.org/10.1016/j. ciresp.2011.07.009.spa
dcterms.referencesE. L. García Alba, “Características y utilidad de las Revisiones Sistemáticas o Meta-análisis,” Rev. Científica Cienc. Médica, vol. 16, no. 2, pp. 4–5, 2013.spa
dcterms.referencesJ. Primicerio et al., “A flexible unmanned aerial vehicle for precision agriculture,” Precis. Agric., vol. 13, no. 4, pp. 517–523, 2012, DOI: https://doi.org/10.1007/s11119-012-9257-6.spa
dcterms.referencesP. Hu, W. Guo, S. C. Chapman, Y. Guo, and B. Zheng, “Pixel size of aerial imagery constrains the applications of unmanned aerial vehicle in crop breeding,” ISPRS J. Photogramm. Remote Sens., vol. 154, no. June 2018, pp. 1–9, 2019, DOI: https://doi.org/10.1016/j.isprsjprs.2019.05.008.spa
dcterms.referencesN. Chebrolu, T. Labe, and C. Stachniss, “Robust long-term registration of UAV images of crop fields for precision agriculture,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3097–3104, 2018, DOI: https://doi. org/10.1109/LRA.2018.2849603.spa
dcterms.referencesS. Bhandari, A. Raheja, R. L. Green, and D. Do, “Towards collaboration between unmanned aerial and ground vehicles for precision agriculture,” Auton. Air Gr. Sens. Syst. Agric. Optim. Phenotyping II, vol. 10218, p. 1021806, 2017, DOI: https://doi.org/10.1117/12.2262049.spa
dcterms.referencesX. Q. Zhang et al., “Application of Multi-rotor Unmanned Aerial Vehicle Application in Management of Stem Borer (Lepidoptera) in Sugarcane,” Sugar Tech, vol. 21, no. 5, pp. 847–852, 2019, DOI: https://doi. org/10.1007/s12355-018-0695-y.spa
dcterms.referencesP. Venkata Subba Rao and S. R. Gorantla, “Design and Modelling of anAffordable UAV Based Pesticide Sprayer in Agriculture Applications,” 5th Int. Conf. Electr. Energy Syst. ICEES 2019, vol. 360, no. February, pp. 1–4, 2019, DOI: https://doi.org/10.1109/ICEES.2019.8719237.spa
dcterms.referencesK. Kuru, D. Ansell, W. Khan, and H. Yetgin, “Analysis and Optimization of Unmanned Aerial Vehicle Swarms in Logistics: An Intelligent Delivery Platform,” IEEE Access, vol. 7, no. c, pp. 15804–15831, 2019, DOI: https://doi.org/10.1109/ACCESS.2019.2892716.spa
dcterms.referencesJ. Lee et al., “A mission management system for complex aerial logistics by multiple unmanned aerial vehicles in MBZIRC 2017,” J. F. Robot., vol. 36, no. 5, pp. 919–939, 2019, DOI: https://doi.org/10.1002/ rob.21860.spa
dcterms.referencesH. Ni, X. Deng, B. Gong, and P. Wang, “Design of regional logistics system based on unmanned aerial vehicle,” Proc. 2018 IEEE 7th Data Driven Control Learn. Syst. Conf. DDCLS 2018, pp. 1045–1051, 2018, DOI: https://doi.org/10.1109/DDCLS.2018.8515965.spa
dcterms.referencesC. Sutheerakul, N. Kronprasert, M. Kaewmoracharoen, and P. Pichayapan, “Application of Unmanned Aerial Vehicles to Pedestrian Traffic Monitoring and Management for Shopping Streets,” Transp. Res. Procedia, vol. 25, pp. 1717–1734, 2017, DOI: https://doi.org/10.1016/j.trpro.2017.05.131.spa
dcterms.referencesM. Golabi, S. M. Shavarani, and G. Izbirak, “An edge-based stochastic facility location problem in UAVsupported humanitarian relief logistics: a case study of Tehran earthquake,” Nat. Hazards, vol. 87, no. 3, pp. 1545–1565, 2017, DOI: https://doi.org/10.1007/s11069-017-2832-4.spa
dcterms.referencesA. Vehicles, “Current and future UAV military users and applications,” Air Sp. Eur., vol. 1, no. 5–6, pp. 51–58, 1999, DOI: https://doi.org/10.1016/s1290-0958(00)88871-1.spa
dcterms.referencesM. A. Ma’Sum et al., “Simulation of intelligent Unmanned Aerial Vehicle (UAV) for military surveillance,” 2013 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2013, pp. 161–166, 2013, DOI: https://doi.org/10.1109/ ICACSIS.2013.6761569.spa
dcterms.referencesM. Zhang, H. Li, G. Xia, W. Zhao, S. Ren, and C. Wang, “Research on the Application of Deep Learning Target Detection of Engineering Vehicles in the Patrol and Inspection for Military Optical Cable Lines by UAV,” Proc. - 2018 11th Int. Symp. Comput. Intell. Des. Isc. 2018, vol. 1, pp. 97–101, 2018, DOI: https:// doi.org/10.1109/ISCID.2018.00029.spa
dcterms.referencesS. J. Levulis, P. R. DeLucia, and S. Y. Kim, “Effects of Touch, Voice, and Multimodal Input, and Task Load on Multiple-UAV Monitoring Performance During Simulated Manned-Unmanned Teaming in a Military Helicopter,” Hum. Factors, vol. 60, no. 8, pp. 1117–1129, 2018, DOI: https://doi. org/10.1177/0018720818788995.spa
dcterms.referencesD. Orfanus, E. P. De Freitas, and F. Eliassen, “Self-Organization as a Supporting Paradigm for Military UAV Relay Networks,” IEEE Commun. Lett., vol. 20, no. 4, pp. 804–807, 2016, DOI: https://doi.org/10.1109/ LCOMM.2016.2524405.spa
dcterms.referencesJ. E. Márquez Díaz, “Seguridad metropolitana mediante el uso coordinado de Drones,” Ing. USBMed, vol. 9, no. 1, p. 39, 2018, DOI: https://doi.org/10.21500/20275846.3299.spa
dcterms.referencesR. Kuntz Rangel, J. L. Freitas, and V. Antonio Rodrigues, “Development of a Multipurpose Hydro Environmental Tool using Swarms, UAV and USV,” IEEE Aerosp. Conf. Proc., vol. 2019-March, 2019, DOI: https://doi.org/10.1109/AERO.2019.8741624.spa
dcterms.referencesM. A. Boon, A. P. Drijfhout, and S. Tesfamichael, “Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: A case study,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 42, no. 2W6, pp. 47–54, 2017, DOI: https://doi.org/10.5194/isprs-archives-XLII2-W6-47-2017.spa
dcterms.referencesY. Lu, D. Macias, Z. S. Dean, N. R. Kreger, and P. K. Wong, “A UAV-Mounted Whole Cell Biosensor System for Environmental Monitoring Applications,” IEEE Trans. Nanobioscience, vol. 14, no. 8, pp. 811–817, 2015, DOI: https://doi.org/10.1109/TNB.2015.2478481.spa
dcterms.referencesK. F. Flynn and S. C. Chapra, “Remote sensing of submerged aquatic vegetation in a shallow nonturbid river using an unmanned aerial vehicle,” Remote Sens., vol. 6, no. 12, pp. 12815–12836, 2014, DOI: https://doi.org/10.3390/rs61212815.spa
dcterms.referencesJ. Witczuk, S. Pagacz, A. Zmarz, and M. Cypel, “Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests - preliminary results,” Int. J. Remote Sens., vol. 39, no. 15–16, pp. 5504–5521, 2018, DOI: https://doi.org/10.1080/01431161.2017.1390621.spa
dcterms.referencesR. Woellner and T. C. Wagner, “Saving species, time and money: Application of unmanned aerial vehicles (UAVs) for monitoring of an endangered alpine river specialist in a small nature reserve,” Biol. Conserv., vol. 233, no. October 2018, pp. 162–175, 2019, DOI: https://doi.org/10.1016/j.biocon.2019.02.037spa
dcterms.referencesL. Mead and M. Arthur, “Environmental condition in British moorlands: quantifying the life cycle of Calluna vulgaris using UAV aerial imagery,” Int. J. Remote Sens., vol. 41, no. 2, pp. 573–583, 2020, DOI: https://doi.org/10.1080/2150704X.2019.1646931.spa
dcterms.referencesJ. N. Hird et al., “Use of unmanned aerial vehicles for monitoring recovery of forest vegetation on petroleum well sites,” Remote Sens., vol. 9, no. 5, 2017, DOI: https://doi.org/10.3390/rs9050413.spa
dcterms.referencesS. Jayathunga, T. Owari, and S. Tsuyuki, “The use of fixed–wing UAV photogrammetry with LiDAR DTM to estimate merchantable volume and carbon stock in living biomass over a mixed conifer– broadleaf forest,” Int. J. Appl. Earth Obs. Geoinf., vol. 73, no. August, pp. 767–777, 2018, DOI: https://doi. org/10.1016/j.jag.2018.08.017.spa
dcterms.referencesV. Sherstjuk and M. Zharikova, “Fire-front recognition in UAV-based forest-fire monitoring system using fuzzy rough soft sets,” 2019 IEEE 2nd Ukr. Conf. Electr. Comput. Eng. UKRCON 2019 - Proc., pp. 1091–1096, 2019, DOI: https://doi.org/10.1109/UKRCON.2019.8879829.spa
dcterms.referencesM. N. Saadat and M. N. Husen, “An application framework for forest fire and haze detection with data acquisition using unmanned aerial vehicle,” ACM Int. Conf. Proceeding Ser., 2018, DOI: https://doi. org/10.1145/3164541.3164624.spa
dcterms.referencesJ. Fernández-Hernandez, D. González-Aguilera, P. Rodríguez-Gonzálvez, and J. Mancera-Taboada, “Image-Based Modelling from Unmanned Aerial Vehicle (UAV) Photogrammetry: An Effective, LowCost Tool for Archaeological Applications,” Archaeometry, vol. 57, no. 1, pp. 128–145, 2015, DOI: https:// doi.org/10.1111/arcm.12078.spa
dcterms.referencesA. Y. M. Lin, A. Novo, S. Har-Noy, N. D. Ricklin, and K. Stamatiou, “Combining GeoEye-1 Satellite Remote Sensing, UAV Aerial Imaging, and Geophysical Surveys in Anomaly Detection Applied to Archaeology,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 4, no. 4, pp. 870–876, 2011, DOI: https://doi. org/10.1109/JSTARS.2011.2143696.spa
dcterms.referencesA. A. Doshi, A. J. Postula, A. Fletcher, and S. P. N. Singh, “Development of micro-UAV with integrated motion planning for open-cut mining surveillance,” Microprocess. Microsyst., vol. 39, no. 8, pp. 829– 835, 2015, DOI: https://doi.org/10.1016/j.micpro.2015.07.008.spa
dcterms.referencesL. Ge, X. Li, and A. H. M. Ng, “UAV for mining applications: A case study at an open-cut mine and a longwall mine in New South Wales, Australia,” Int. Geosci. Remote Sens. Symp., vol. 2016-Novem, no. 1, pp. 5422–5425, 2016, DOI: https://doi.org/10.1109/IGARSS.2016.7730412.spa
dcterms.referencesY. Fang, Z. Hu, L. Xu, A. Wong, and D. A. Clausi, “Estimation Of Iron Concentration In Soil Of A Mining Area From Uav-Based Hyperspectral Imagery,” in 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2019, pp. 1–5, DOI: https://doi.org/10.1109/ WHISPERS.2019.8920973.spa
dcterms.referencesA. Ranjan, B. Panigrahi, H. B. Sahu, and P. Misra, “SkyHelp: Leveraging UAVs for emergency communication support in deep open pit mines,” 2018 10th Int. Conf. Commun. Syst. Networks, COMSNETS 2018, vol. 2018-Janua, no. 1, pp. 546–548, 2018, DOI: https://doi.org/10.1109/COMSNETS.2018.8328269.spa
dcterms.referencesO. G. Ajayi, M. Palmer, and A. A. Salubi, “Modelling farmland topography for suitable site selection of dam construction using unmanned aerial vehicle (UAV) photogrammetry,” Remote Sens. Appl. Soc. Environ., vol. 11, no. July, pp. 220–230, 2018, DOI: https://doi.org/10.1016/j.rsase.2018.07.007.spa
dcterms.referencesK. N. Tahar, A. Ahmad, W. A. A. Wan Mohd Akib, and W. M. N. Wan Mohd, “Aerial mapping using autonomous fixed-wing unmanned aerial vehicle,” Proc. - 2012 IEEE 8th Int. Colloq. Signal Process. Its Appl. CSPA 2012, pp. 164–168, 2012, DOI: https://doi.org/10.1109/CSPA.2012.6194711.spa
dcterms.referencesT. C. Su, “Multispectral sensors carried on unmanned aerial vehicle (UAV) for trophic state mapping of the small reservoir in Kinmen, Taiwan,” Int. Geosci. Remote Sens. Symp., vol. 2015-Novem, pp. 5348– 5351, 2015, DOI: https://doi.org/10.1109/IGARSS.2015.7327043.spa
dcterms.referencesO. Wigmore, B. Mark, J. McKenzie, M. Baraer, and L. Lautz, “Sub-metre mapping of surface soil moisture in proglacial valleys of the tropical Andes using a multispectral unmanned aerial vehicle,” Remote Sens. Environ., vol. 222, no. January 2018, pp. 104–118, 2019, DOI: https://doi.org/10.1016/j. rse.2018.12.024.spa
dcterms.referencesF. H. Yeh, C. J. Huang, J. Y. Han, and L. Ge, “Modeling Slope Topography Using Unmanned Aerial Vehicle Image Technique,” MATEC Web Conf., vol. 147, pp. 1–6, 2018, DOI: https://doi.org/10.1051/ matecconf/201814707002.spa
dcterms.referencesM. Yu, Y. Huang, J. Zhou, and L. Mao, “Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion,” Environ. Earth Sci., vol. 76, no. 15, 2017, DOI: https://doi.org/10.1007/s12665-017-6860-xspa
dcterms.referencesS. J. Hong, Y. Han, S. Y. Kim, A. Y. Lee, and G. Kim, “Application of deep-learning methods to bird detection using unmanned aerial vehicle imagery,” Sensors (Switzerland), vol. 19, no. 7, pp. 1–16, 2019, DOI: https://doi.org/10.3390/s19071651.spa
dcterms.referencesP. J. Zarco-Tejada, L. Suárez, J. A. J. Berni, E. Fereres, J. A. J. Berni, and P. J. Zarco-Tejada, “Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle Improved Evapotranspiration using Unmanned Aerial Vehicles View project High throughput and remote trait measurement View project Thermal and Nar,” Ieee Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 722–738, 2009, DOI: https://doi.org/10.1109/TGRS.2008.2010457.spa
dcterms.referencesV. Trukhachev, S. Oliinyk, T. Lesnyak, and N. Zlyidnev, “Application of unmanned aerial vehicles for remote estimation of pasture fertility while growing Dzhalginsky merino sheep,” Eng. Rural Dev., vol. 18, no. 1, pp. 1673–1679, 2019, DOI: https://doi.org/10.22616/ERDev2019.18.N465.spa
dcterms.referencesS. S. Esfahlani, “Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection,” J. Ind. Inf. Integr., vol. 15, no. November 2018, pp. 42–49, 2019, DOI: https://doi. org/10.1016/j.jii.2019.04.006.spa
dcterms.referencesC. Liu, X. Liu, X. Peng, E. Wang, and S. Wang, “Application of 3D-DDA integrated with unmanned aerial vehicle–laser scanner (UAV-LS) photogrammetry for stability analysis of a blocky rock mass slope,” Landslides, vol. 16, no. 9, pp. 1645–1661, 2019, DOI: https://doi.org/10.1007/s10346-019-01196-6.spa
dcterms.referencesS. Siebert and J. Teizer, “Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system,” Autom. Constr., vol. 41, pp. 1–14, 2014, DOI: https://doi.org/10.1016/j. autcon.2014.01.004.spa
dcterms.referencesT. C. Su and H. T. Chou, “Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu reservoir in Kinmen, Taiwan,” Remote Sens., vol. 7, no. 8, pp. 10078–10097, 2015, DOI: https://doi.org/10.3390/rs70810078.spa
dcterms.referencesD. G. Schmale III, B. R. Dingus, and C. Reinholtz, “Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields,” J. F. Robot., vol. 25, no. 3, pp. 133–147, Mar. 2008, DOI: https://doi.org/10.1002/rob.20232.spa
dcterms.referencesR. Avellaneda, S. Cabrera, P. A. Martínez, y C. G. Donoso Albarracín, "Apoyo tecnológico para la fidelización y captación de nuevos clientes por medio de una aplicación móvil", Investigación e Innovación en Ingenierías, vol. 5, n.º 1, pp. 92-101, 2017. DOI: https://doi.org/10.17081/invinno.5.1.2618spa
dcterms.referencesD. Henao - león, A. Camilo Báez - Alarcón, y J. Bethsaid Pedroza - Rojas, “Metodología para determinar la viabilidad de generación de energía eléctrica por medio del recurso eólico”, Revista Investigación e Innovación en Ingenierías, vol. 6, n°. 2, 2018. DOI: https://doi.org/10.17081/invinno.6.2.3108spa
dcterms.referencesM. Piras ,G. Taddia ,M. G. Forno ,M. Gattiglio ,I. Aicardi ,P. Dabove, et al., “Detailed geological mapping in mountain areas using an unmanned aerial vehicle: application to the Rodoretto Valley, NW Italian Alps,” Geomatics, Nat. Hazards Risk, vol. 8, no. 1, pp. 137–149, 2017, DOI: https://doi.org/10.1080/1947 5705.2016.1225228.spa
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.9 No.1.(2021)spa
dc.relation.citationendpage166spa
dc.relation.citationissue1(2021)spa
dc.relation.citationstartpage149spa
dc.relation.citationvolume9spa
dc.relation.citesEslava Pedraza, J. E., Martínez Sarmiento, F. A., Soto Vergel, Ángelo J., Vera Rozo , E. J., & Guevara Ibarra, D. (2021). Vehículos aéreos no tripulados como alternativa de solución a los retos de innovación en diferentes campos de aplicación: una revisión de la literatura. Investigación E Innovación En Ingenierías, 9(1), 149-166. https://doi.org/10.17081/invinno.9.1.4017
dc.relation.ispartofjournalRevista Investigación e Innovación en Ingenieríasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalVehículo aéreo no tripuladospa
dc.subject.proposalUAVspa
dc.subject.proposalaplicacionesspa
dc.subject.proposalrevisión sistemáticaspa
dc.subject.proposalala fijaspa
dc.subject.proposalmultirrotorspa
dc.subject.proposalUnmanned aerial vehicleeng
dc.subject.proposalapplicationseng
dc.subject.proposalTree of Scienceeng
dc.subject.proposalsystematic revieweng
dc.subject.proposalfixed wingeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem