Mostrar el registro sencillo del ítem

dc.contributor.authorMarquez-Peñaranda, J. F.
dc.contributor.authorSanchez-Silva, M.
dc.contributor.authorHusserl, J.
dc.contributor.authorBastidas-Arteaga, E.
dc.date.accessioned2021-11-06T20:04:57Z
dc.date.available2021-11-06T20:04:57Z
dc.date.issued2015-12-29
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/714
dc.description.abstractConcrete biodeterioration in sewers and structures subjected to environments rich in hydrogen sulfide has been related to the activity of sulfur oxidizing bacteria (SOB). In previous studies, the effect of the activity of SOB on concrete structures has been linked mainly to weight loss. In our work we have investigated, in addition to the weight loss, the variations in porosity and compressive strength. The main objective of this paper is to explore, under controlled conditions, the effect of biodegradation of non-submerged samples, on both the physical properties and the mechanical performance. Towards this aim, cement mortar samples inoculated with pure cultures of Acidithiobacillus thiooxidans, Halothiobacillus neapolitanus, and a consortium containing both strains, were exposed to an H2S-rich environment. Changes in physical properties, including weight and porosity, and compressive strength were measured over 300 days. The results showed that the greatest reduction of weight and compressive strength was observed in samples inoculated with the consortium (7 and 52 %, respectively); while the largest variation in porosity was observed in samples inoculated with A. thiooxidans (27 %). These results were used to obtain relationships between the amount of sulfur available over time with specific physical and mechanical properties; i.e., compressive strength, porosity, weight loss, and physical appearance.eng
dc.format.extent15 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMaterials And Structuresspa
dc.relation.ispartofMaterials And Structures
dc.rights© 2021 Springer Nature Switzerland AG. Part of Springer Nature.eng
dc.sourcehttps://link.springer.com/article/10.1617%2Fs11527-015-0774-4spa
dc.titleEffects of biodeterioration on the mechanical properties of concreteeng
dc.typeArtículo de revistaspa
dcterms.referencesBielefeldt A, Gutierrez-Padilla MGD, Ovtchinnikov S, Silverstein J, Hernandez M (2010) Bacterial kinetics of sulfur oxidizing bacteria and their biodeterioration rates of concrete sewer pipe samples. J Environ Eng 136:731–738spa
dcterms.referencesWei S, Jiang Z, Liu H, Zhou D, Sanchez-silva M (1007) Microbiologically induced deterioration of concrete—a review. Braz J Microbiol 2013:1001–1007spa
dcterms.referencesVidela HA (1996) Manual of biocorrosion. CRC Press, Boca Ratonspa
dcterms.referencesCho K, Mori T (1995) A newly isolated fungus participates in the corrosion of concrete sewer pipes. Water Sci Technol 31:263–271spa
dcterms.referencesMelchers RE, Jeffrey RJ (2008) Probabilistic models for steel corrosion loss and pitting of marine infrastructure. Reliab Eng Syst Saf 93:423–432spa
dcterms.referencesMelchers RE (2005) The effect of corrosion on the structural reliability of steel offshore structures. Corros Sci 47:2391–2410spa
dcterms.referencesKumar R, Gardoni P, Sanchez-Silva M (2009) Effect of cumulative seismic damage and corrosion on the life-cycle cost of reinforced concrete bridges. Earthq Eng Struct Dyn 38:887–905spa
dcterms.referencesSanchez-Silva M, Klutke G-A, Rosowsky DV (2011) Life-cycle performance of structures subject to multiple deterioration mechanisms. Struct Saf 33:206–217spa
dcterms.referencesBastidas-Arteaga E, Sánchez-Silva M, Chateauneuf A (2007) Structural reliability of RC structures subject to biodeterioration, corrosion and concrete cracking. In: Kanda J, Takada T, Furuta H (eds) 10th international conference. Applied Statista Probability in Civil Engineering. Applied Statista Probability in Civil Engineering, Tokyo, pp 183–190spa
dcterms.referencesBastidas-Arteaga E, Sánchez-Silva M, Chateauneuf A, Ribas Silva M (2008) Coupled reliability model of biodeterioration, chloride ingress and cracking for reinforced concrete structures. Struct Saf 30:110–129spa
dcterms.referencesAlexander M, Bertron A, De-Belie N (2012) Performance of cement-based materials in aggressive aqueous environments. State of the Art Report, RILEM TC 211-PAE. Springer, New Yorkspa
dcterms.referencesSawyer CN, Mccarty PL, Parkin GF (2003) Chemistry for environmental enginnering and science. McGraw Hill, New Yorkspa
dcterms.referencesDopson M, Johnson DB (2012) Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol 14:2620–2631spa
dcterms.referencesMadigan M, Martinko JM, Parker J (2000) Brock biology of microorganisms. Southern Illinois University Carbondale, Carbondalespa
dcterms.referencesIslander RL, Devinny JS, Mansfeld F, Adam P, Hong S (1991) Microbial ecology of crown corrosion in sewers. J Environ Eng 117:751–770spa
dcterms.referencesHernandez M, Marchand EA, Roberts D, Peccia J (2002) In situ assessment of active Thiobacillus species in corroding concrete sewers using fluorescent RNA probes. Int Biodeterior Biodegrad 49:271–276spa
dcterms.referencesFriedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259spa
dcterms.referencesHudon E, Mirza S, Frigon D (2011) Biodeterioration of concrete sewer pipes: state of the art and research needs. J Pipeline Syst 2:42–52spa
dcterms.referencesOkabe S, Odagiri M, Ito T, Satoh H (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73:971–980spa
dcterms.referencesLors C, Chehade MH, Damidot D (2009) pH variations during growth of Acidithiobacillus thiooxidans in buffered media designed for an assay to evaluate concrete biodeterioration. Int Biodeterior Biodegrad 63:880–883spa
dcterms.referencesEhrich BS, Helard L, Letourneux R, Willocq J, Bock E (1999) Biogenic and chemical sulfuric acid corrosion of mortars. J Mater Civ Eng 11:340–344spa
dcterms.referencesSand W (1987) Importance of hydrogen sulfide, thiosulfate, and methylmercaptan for growth of thiobacilli during simulation of concrete corrosion. Appl Environ Microbiol 53:1645–1648spa
dcterms.referencesBeddoe RE, Dorner HW (2005) Modelling acid attack on concrete: Part I. The essential mechanisms. Cem Concr Res 35:2333–2339spa
dcterms.referencesBa M, Qian C, Guo X, Han X (2011) Effects of steam curing on strength and porous structure of concrete with low water/binder ratio. Constr Build Mater 25:123–128spa
dcterms.referencesChen X, Wu S, Zhou J (2013) Influence of porosity on compressive and tensile strength of cement mortar. Constr Build Mater 40:869–874spa
dcterms.referencesKumar R, Bhattacharjee B (2003) Porosity, pore size distribution and in situ strength of concrete. Cem Concr Res 33:155–164spa
dcterms.referencesMahmoodian M, Alani AM (2013) Multi-failure mode assessment of buried concrete pipes subjected to time-dependent deterioration, using system reliability analysis. J Fail Anal Preven 13:634–642spa
dcterms.referencesWiktor V, De Leo F, Urzì C, Guyonnet R, Grosseau P, Garcia-Diaz E (2009) Accelerated laboratory test to study fungal biodeterioration of cementitious matrix. Int Biodeterior Biodegrad 63:1061–1065spa
dcterms.referencesHerisson J (2012) Biodétérioration des matériaux cimentaires dans les ouvrages d’assainissement—Etude comparative du ciment d’aluminate de calcium et du ciment Portland, Université Paris-Estspa
dcterms.referencesJensen HS, Nielsen AH, Lens PNL, Hvitved-Jacobsen T, Vollertsen J (2009) Hydrogen sulphide removal from corroding concrete: comparison between surface removal rates and biomass activity. Environ Technol 30:1291–1296spa
dcterms.referencesSetzer MJ (1997) Action of frost and deicing chemicals—basic phenomena and testing. In: Setzer MJ (ed) Freeze-thaw durability of concrete. E&FN Spon, London, pp 3–23spa
dcterms.referencesAmerican Society for Testing Materials ASTM C109/C109M-12 (2012) Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] Cube Specimens). ASTM, West Conshohockenspa
dcterms.referencesDuracrete (1998) Modelling of degradation, DuraCrete—probabilistic performance based durability design of concrete structures, EU-Brite EuRam III, contract BRPR-CT95-0132, project BE95-1347/R4-5spa
dcterms.referencesDe Larrard T, Bastidas-Arteaga E, Duprat F, Schoefs F (2014) Effects of climate variations and global warming on the durability of RC structures subjected to carbonation. Civ Eng Environ Syst 31:153–164spa
dcterms.referencesRouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N et al (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66:1739–1758spa
dcterms.referencesChindaprasirt P, Rukzon S (2008) Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr Build Mater 22:1601–1606spa
dcterms.referencesZhao H, Xiao Q, Huang D, Zhang S (2014) Influence of pore structure on compressive strength of cement mortar. Hindawi Publ Corp 2014:1–12spa
dcterms.referencesPichler B, Hellmich C, Eberhardsteiner J, Wasserbauer J, Termkhajornkit P, Barbarulo R, et al (2013) Strength evolution of hydrating cement pastes: the counteracting effects of capillary porosity and unhydrated clinker reinforcements. In: Poromechanics V ASCE, pp. 1837–1846spa
dcterms.referencesEijo-Río E, Petit-Boix A, Villalba G, Suárez-Ojeda ME, Marin D, Amores MJ, Aldea X, Rieradevall J, Gabarrell X (2015) Municipal sewer networks as sources of nitrous oxide, methane and hydrogen sulphide emissions: a review and case studies. J Environ Chem Eng 3(3):2084–2094spa
dc.identifier.doihttps://doi.org/10.1617/s11527-015-0774-4
dc.publisher.placePaíses Bajosspa
dc.relation.citationeditionVol.49 No.10.(2016)spa
dc.relation.citationendpage4099spa
dc.relation.citationissue10(2016)spa
dc.relation.citationstartpage4085spa
dc.relation.citationvolume49spa
dc.relation.citesMarquez-Peñaranda, J. F., Sanchez-Silva, M., Husserl, J., & Bastidas-Arteaga, E. (2016). Effects of biodeterioration on the mechanical properties of concrete. Materials and Structures, 49(10), 4085-4099.
dc.relation.ispartofjournalMaterials and Structuresspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalConcreteeng
dc.subject.proposalBiodeteriorationeng
dc.subject.proposalPorosityeng
dc.subject.proposalCompressive strengtheng
dc.subject.proposalWeight losseng
dc.subject.proposalSulfur-oxidizing bacteriaeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem