Mostrar el registro sencillo del ítem

dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorGonzález-Delgado, Angel Darío
dc.contributor.authorUrbina-Suarez, Nestor Andres
dc.contributor.authorBarajas, Crisóstomo
dc.contributor.authorSanguino, Paola Andrea
dc.date.accessioned2021-11-06T02:58:16Z
dc.date.available2021-11-06T02:58:16Z
dc.date.issued2018-02
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/693
dc.description.abstractBackground: The production of biofuel and high value products from microalgae exhibits difficulties that have been widely studied to develop viable, efficient and economic methods for recovering metabolites. Objectives: This work is focused on evaluating experimental methods to obtain carbohydrates, proteins and lipids by varying process variables (solvent concentration, temperature, biomass/solvent ratio and moisture content). Methods/Analysis: Carbohydrate and proteins were extracted by acid and alkaline hydrolysis to study the effect of biomass moisture on recovery of these metabolites. Lipids were obtained using hexane and methanol-chloroform methods and its quantification was performed by gravimetric analysis. Findings: It was found that 41.96% and 49.77% of carbohydrates were recovered from C. vulgaris using biomass without thermal pretreatment by acid and alkaline hydrolysis, respectively. Regarding to lipid extraction, hexane was used as solvent for recovering 18.22% of lipids from C. vulgaris. In addition, results suggested that dehydrating biomass at 105°C reduces recovery of high value products. Novelty/Improvement: This study proposes a selective method for extracting metabolites, which enhances efficiency of recovery when is carried out under suitable conditions of biomass moisture, time and solvent volume.eng
dc.format.extent18 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherIndian Journal of Science and Technologyspa
dc.relation.ispartofIndian Journal of Science and Technology ISSN: 0974-6846, 2018 vol:11 fasc: 7 págs: 1 - 18, DOI:10.17485/ijst/2018/v11i7/121076
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 International License.eng
dc.sourcehttps://indjst.org/articles/development-of-a-selective-method-for-metabolites-extraction-from-microalgae-biomassspa
dc.titleDevelopment of a Selective Method for Metabolites Extraction from Microalgae Biomasseng
dc.typeArtículo de revistaspa
dcterms.referencesRashid N, Park W, Selvaratnam T. Binary culture of microalgae as an integrated approach for enhanced biomass and metabolites productivity, wastewater treatment, and bioflocculation. Chemosphere. 2018 Mar; 194:67-75.Crossref. PMid:29197817.spa
dcterms.referencesKalla N, Khan S. Effect of Variable Salinity and Phosphorus Culture Conditions on Growth and Pigment Content of Chlorella vulgaris. Indian Journal of Science and Technology. 2016 Jul; 9(28):1-7. Crossref.spa
dcterms.referencesSanniyasi E, Prakasam V, Selvarajan R. Optimization of a biotic conditions suitable for the production of biodiesel from Chlorella vulgaris. Indian Journal of Science and Technology. 2011 Feb; 4(2):91-7.spa
dcterms.referencesRamachandra T, Sajina K, Supriya G. Lipid composition in microalgal community under laboratory and outdoor conditions. Indian Journal of Science and Technology. 2011 Nov; 4(11):1488-94.spa
dcterms.referencesMuradovich M. Foresight of Microalgae Usage for the Production of Third-Generation Biofuel. Indian Journal of Science and Technology. 2017 Apr; 10(16):1-10.spa
dcterms.referencesSathasivam R, Radhakrishnan R, Hashem A, Abd EF. Microalgae metabolites : A rich source for food and medicine. Saudi Journal of Biological Sciences. 2017 Nov; p. 1-14. Crossref.spa
dcterms.referencesNee W, Loke P, Chuan T, Ching J, Ng E, Chang J. Mild cell disruption methods for bio-functional proteins recovery from microalgae - Recent developments and future perspectives. Algal Research. 2017 Mayspa
dcterms.referencesTandon P, Jin Q. Microalgae culture enhancement through key microbial approaches. Renewable and Sustainable Energy Reviews. 2017 Dec; 80:1089-99. Crossref.spa
dcterms.referencesWang X, Sheng L, Yang X. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp. Bioresource Technology. 2017 Apr; 229:119-25. Crossref.spa
dcterms.referencesSchulze C, Strehle A, Merdivan S, Mundt S. Carbohydrates in microalgae: Comparative determination by TLC, LC-MS without derivatization, and the photometric thymol-sulfuric acid method. Algal Research. 2017 Jul; 25:372-80. Crossref.spa
dcterms.referencesNee W, Loke P, Heng W. Proteins recovery from wet microalgae using liquid biphasic flotation. Bioresource Technology. 2017 Nov; 244(pt 2):1329-36.spa
dcterms.referencesSerive B, Kaas R, Berard J, Pasquet V, Picot L, Cadoret J. Selection and optimisation of a method for efficient metabolites extraction from microalgae. Bioresource Technology. 2012 Nov; 124:311-20. Crossref. PMid:22989659.spa
dcterms.referencesGonzalez-Delgado AD, Garcia-Martinez J, Peralta-Ruiz YY. Cell Disruption and Lipid Extraction from Microalgae Amphiprora sp. Using Acid Hydrolysis-Solvent Extraction Route. Contemporary Engineering Sciences. 2017; 10(17):841-9. Crossref.spa
dcterms.referencesChang M, Li D, Wang W. Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse. Bioresource Technology. 2017 Nov; 244(pt 1):1055-8. Crossref. PMid:28851160.spa
dcterms.referencesDubois M, Gilles KA, Hamilton JK, Rebers PA, Smith FSF. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry. 1956; 28(3):350- 6. Crossref.spa
dcterms.referencesLowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. The Journal of Biolical Chemistry. 1951 Nov; 193(1):265-75. PMid:14907713.spa
dcterms.referencesMussatto SI, Dragone G, Guimaraes PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA. Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances. 2010 Nov; 28(6):817-30. Crossref. PMid:20630488.spa
dcterms.referencesMagota A, Saga K, Okada S, Atobe S, Imou K. Effect of thermal pretreatments on hydrocarbon recovery from Botryococcusbraunii. Bioresource Technology. 2012 Nov; 123:195-8. Crossref. PMid:22940319.spa
dcterms.referencesLam MK, Lee KT. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances. 2012 Jun; 30(3):673-90. Crossref.PMid:22166620.spa
dcterms.referencesBrennan L, Owende P. Biofuels from microalgae a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews. 2010 Feb; 14(2):557-77. Crossref.spa
dcterms.referencesKanda H, Li P, Ikehara T, Yasumoto M. Lipids extracted from several species of natural blue-green microalgae by dimethyl ether: extraction yield and properties. Fuel. 2012 May; 95:88-92. Crossref.spa
dcterms.referencesHarun R, Jason W, Cherrington T, Danquah M. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Applied Energy. 2011 Oct; 88(10):3464-7. Crossref.spa
dcterms.referencesSafi C, Zebib B, Merah O, Pontalier PY, Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews. 2014 Jul; 35:265-78. Crossref.spa
dcterms.referencesSathish A, Sims CR. Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresource Technology. 2012 Aug; 118:643-7. Crossref. PMid:22721684.spa
dcterms.referencesJones J, Manning S, Montoya M, Keller K, Poenie M. Extraction of Algal Lipids and Their Analysis by HPLC and Mass Spectrometry. Journal of the American Oil Chemists’ Society. 2012 Aug; 89(8):1371-81. Crossref.spa
dcterms.referencesShin HY, Ryu JH, Bae SY, Crofcheck C, Crocker M. Lipid extraction from Scenedesmus sp. microalgae for biodiesel production using hot compressed hexane. Fuel. 2014 Aug; 130:66-9. Crossref.spa
dcterms.referencesBligh E, Dyer W. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 1959 Aug; 37(8):911-7. Crossref. PMid:13671378.spa
dcterms.referencesDos-Santos RR, Mendonca-Moreira D, Norie-Kunigami C, Gomes-Aranda DA, Lapa-Teixeira CM. Comparison between several methods of total lipid extraction from Chlorella vulgaris biomass. Ultrasonics Sonochemistry. 2015 Jan; 22:95-9. Crossref. PMid:24910443.spa
dc.identifier.doi10.17485/ijst/2018/v11i7/121076
dc.publisher.placeIndiaspa
dc.relation.citationeditionVol. 11, No. 7 (2018)spa
dc.relation.citationendpage18spa
dc.relation.citationissue7 (2018)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume11spa
dc.relation.citesSanguino-Barajas, P. A., Barajas-Solano, A. F., Urbina-Suarez, N. A., Gonzalez-Delgado, A. D. y Barajas-Ferreira, C. (2018a). Development of a Selective Method for Metabolites Extraction from Microalgae Biomass. Indian Journal of Science and Technology, 11(7), 1–18. https://indjst.org/articles/development-of-a-selective-method-for-metabolites-extraction-from-microalgae-biomass
dc.relation.ispartofjournalIndian Journal of Science and Technologyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalCarbohydrateseng
dc.subject.proposalFlocculationeng
dc.subject.proposalLipidseng
dc.subject.proposalMicroalgaeeng
dc.subject.proposalProteinseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem