dc.contributor.author | Moreno Gamboa, Faustino | |
dc.contributor.author | Escudero-Atehortua, Ana | |
dc.contributor.author | Nieto-Londoño, César | |
dc.date.accessioned | 2024-04-11T15:16:22Z | |
dc.date.available | 2024-04-11T15:16:22Z | |
dc.date.issued | 2022-08-02 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6881 | |
dc.description.abstract | Hybrid solar thermal power plants using the Brayton cycle are currently of great interest
as they have proven to be technically feasible. This study evaluates mechanisms to reduce fuel
consumption and increase the power generated, improving plant efficiency. An energy and exergy
model for the hybrid solar plant is developed using an estimation model for the solar resource to
determine the plant operation under specific environmental conditions. The effect of using different
working fluids in the Brayton cycle, such as air, and helium in transcritical conditions and carbon
dioxide in subcritical and supercritical conditions, is evaluated. Additionally, the plant’s exergy
destruction and exergy efficiency are evaluated. In those, it can be highlighted that the helium cycle
in the same operating conditions compared to other working fluids can increase the power by 160%,
increasing fuel consumption by more than 390%. | eng |
dc.format.extent | 24 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Sustainability (Switzerland) | spa |
dc.relation.ispartof | Sustainability 2022, 14, 9479. https://doi.org/10.3390/su14159479 | |
dc.rights | under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/) | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.mdpi.com/2071-1050/14/15/9479 | spa |
dc.title | Alternatives to Improve Performance and Operation of a Hybrid Solar Thermal Power Plant Using Hybrid Closed Brayton Cycle | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Chen, L.; Zhang, W.; Sun, F. Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles. Appl. Energy 2007, 84, 512–525. [CrossRef] | spa |
dcterms.references | Obaideen, K.; AlMallahi, M.N.; Al-Alami, A.H.; Ramadan, M.; Abdelkareem, M.A.; Shehata, N.; Olabi, A. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. Int. J. Thermofluids 2021, 12, 100123. [CrossRef] | spa |
dcterms.references | Mills, D. Advances in solar thermal electricity technology. Sol. Energy 2004, 76, 19–31. [CrossRef] | spa |
dcterms.references | Najjar, Y.S.; Zaamout, M.S. Comparative performance of closed cycle gas turbine engine with heat recovery using different gases. Heat Recover. Syst. CHP 1992, 12, 489–495. [CrossRef] | spa |
dcterms.references | Al-Attab, K.; Zainal, Z. Externally fired gas turbine technology: A review. Appl. Energy 2015, 138, 474–487. [CrossRef] | spa |
dcterms.references | Olumayegun, O.; Wang, M.; Kelsall, G. Closed-cycle gas turbine for power generation: A state-of-the-art review. Fuel 2016, 180, 694–717. [CrossRef] | spa |
dcterms.references | Ulrich, H. Closed-Cycle Gas Turbines: Operating Experience and Future Potential; ASME Press: New York, NY, USA, 2005. | spa |
dcterms.references | Wright, D.E.; Tignac, L.L. Status Report—Advanced Heat Exchanger Technology for a CCGT Power Generation System. J. Eng. Power 1983, 105, 348–353. [CrossRef] | spa |
dcterms.references | Holt, C.F.; Boiarski, A.A.; Carlton, H.E. The Gas Turbine Heat Exchanger in the Fluidized Bed Combustor. J. Eng. Power 1983, 105, 438–445. [CrossRef] | spa |
dcterms.references | Abram, T.; Ion, S. Generation-IV nuclear power: A review of the state of the science. Energy Policy 2008, 36, 4323–4330. [CrossRef] | spa |
dcterms.references | Vera, D.; Jurado, F.; Carpio, J. Study of a downdraft gasifier and externally fired gas turbine for olive industry wastes. Fuel Process. Technol. 2011, 92, 1970–1979. [CrossRef] | spa |
dcterms.references | Pantaleo, A.; Camporeale, S.; Shah, N. Thermo-economic assessment of externally fired micro-gas turbine fired by natural gas and biomass: Applications in Italy. Energy Convers. Manag. 2013, 75, 202–213. [CrossRef] | spa |
dcterms.references | Cocco, D.; Deiana, P.; Cau, G. Performance evaluation of small size externally fired gas turbine (EFGT) power plants integrated with direct biomass dryers. Energy 2006, 31, 1459–1471. [CrossRef] | spa |
dcterms.references | Soltani, S.; Mahmoudi, S.; Yari, M.; Rosen, M. Thermodynamic analyses of an externally fired gas turbine combined cycle integrated with a biomass gasification plant. Energy Convers. Manag. 2013, 70, 107–115. [CrossRef] | spa |
dcterms.references | Dunham, M.T.; Iverson, B.D. High-efficiency thermodynamic power cycles for concentrated solar power systems. Renew. Sustain. Energy Rev. 2014, 30, 758–770. [CrossRef] | spa |
dcterms.references | Heller, P.; Pfänder, M.; Denk, T.; Tellez, F.; Valverde, A.; Fernandez, J.; Ring, A. Test and evaluation of a solar powered gas turbine system. Sol. Energy 2006, 80, 1225–1230. [CrossRef] | spa |
dcterms.references | Chen, Y.; Cheng, Y.; Sun, M. Physical Mechanisms on Plasmon-Enhanced Organic Solar Cells. J. Phys. Chem. C 2021, 125, 21301–21309. [CrossRef] | spa |
dcterms.references | Chen, Y.; Cheng, Y.; Sun, M. Nonlinear plexcitons: Excitons coupled with plasmons in two-photon absorption. Nanoscale 2022, 14, 7269–7279. [CrossRef] | spa |
dcterms.references | Barigozzi, G.; Perdichizzi, A.; Gritti, C.; Guaiatelli, I. Techno-economic analysis of gas turbine inlet air cooling for combined cycle power plant for different climatic conditions. Appl. Therm. Eng. 2015, 82, 57–67. [CrossRef] | spa |
dcterms.references | Livshits, M.; Kribus, A. Solar hybrid steam injection gas turbine (STIG) cycle. Sol. Energy 2012, 86, 190–199. [CrossRef] | spa |
dcterms.references | Olivenza-León, D.; Medina, A.; Calvo-Hernández, A. Thermodynamic modeling of a hybrid solar gas-turbine power plant. Energy Convers. Manag. 2015, 93, 435–447. [CrossRef] | spa |
dcterms.references | Santos, M.; Merchán, R.; Medina, A.; Hernández, A.C. Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant. Energy Convers. Manag. 2016, 115, 89–102. [CrossRef] | spa |
dcterms.references | Merchán, R.; Santos, M.; Reyes-Ramírez, I.; Medina, A.; Hernández, A.C. Modeling hybrid solar gas-turbine power plants: Thermodynamic projection of annual performance and emissions. Energy Convers. Manag. 2017, 134, 314–326. [CrossRef] | spa |
dcterms.references | Liu, Y.; Wang, Y.; Huang, D. Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy 2019, 189, 115900. [CrossRef] | spa |
dcterms.references | Kulhánek, M.; Dostál, V. Supercritical carbon dioxide cycles thermodynamic analysis and comparison. In Supercritical CO2 Power Cycle, Proceedings of Supercritical CO2 Power Cycle Symposium, Troy, NY, USA, 29–30 April 2009; EEUU: Boulder, CO, USA, 2011. | spa |
dcterms.references | Liao, J.; Liu, X.; Zheng, Q.; Zhang, H. Analysis of the power generation cycle characteristics of supercritical carbon dioxide. J. Eng. Therm. Energy Power 2016, 31, 40–46 | spa |
dcterms.references | Wang, X.; Yang, Y.; Zheng, Y.; Dai, Y. Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application. Energy 2017, 119, 971–982. [CrossRef] | spa |
dcterms.references | Wang, X.; Dai, Y. Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study. Appl. Energy 2016, 170, 193–207. [CrossRef] | spa |
dcterms.references | Akbari, A.D.; Mahmoudi, S.M. Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle. Energy 2014, 78, 501–512. [CrossRef] | spa |
dcterms.references | Bae, S.J.; Ahn, Y.; Lee, J.; Lee, J.I. Hybrid system of Supercritical Carbon Dioxide Brayton cycle and carbon dioxide Rankine cycle combined fuel cell. In Proceedings of the ASME Turbo Expo, Düsseldorf, Germany, 16–20 June 2014; Volume 3B. | spa |
dcterms.references | Cengel, Y.A.; Boles, M.E. Thermodynamics: An Engineering Approach; McGraw-Hill: New York, NY, USA, 2012. | spa |
dcterms.references | Santos, M.; Miguel-Barbero, C.; Merchán, R.; Medina, A.; Hernández, A.C. Roads to improve the performance of hybrid thermosolar gas turbine power plants: Working fluids and multi-stage configurations. Energy Convers. Manag. 2018, 165, 578–592. [CrossRef] | spa |
dcterms.references | McDonald, C.F. Helium turbomachinery operating experience from gas turbine power plants and test facilities. Appl. Therm. Eng. 2012, 44, 108–142. [CrossRef] | spa |
dcterms.references | Bamrnert, K.; Groschup, G. Status report on closed-cycle power plants in the federal republic of Germany. J. Eng. Gas Turbines Power 1977, 99, 37–46. [CrossRef] | spa |
dcterms.references | Baxi, C.; Telengator, A.; Razvi, J. Rotor scale model tests for power conversion unit of GT-MHR. Nucl. Eng. Des. 2012, 251, 344–348. [CrossRef] | spa |
dcterms.references | Osigwe, E.O.; Gad-Briggs, A.; Nikolaidis, T. Feasibility of a Helium Closed-Cycle Gas Turbine for UAV Propulsion. Appl. Sci. 2021, 11, 28. [CrossRef] | spa |
dcterms.references | Alali, A.E.; Al-Shboul, K.F. Performance analysis of the closed Brayton power cycle in a small-scale pebble bed gas cooled reactor using different working fluids. Ann. Nucl. Energy 2018, 121, 316–323. [CrossRef] | spa |
dcterms.references | Tesio, U.; Guelpa, E.; Verda, V. Multi-objective optimization of helium power cycle for thermo-chemical energy storage in concentrated solar power. Energy Convers. Manag. X 2021, 12, 100116. [CrossRef] | spa |
dcterms.references | Gueymard, C. Prediction and Performance Assessment of Mean Hourly Global Radiation. Sol. Energy 2000, 68, 285–303. [CrossRef] | spa |
dcterms.references | Gueymard, C.A.; Ruiz-Arias, J.A. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Sol. Energy 2016, 128, 1–30. [CrossRef] | spa |
dcterms.references | Mejdoul, R.; Taqi, M.; Ben, S.; Hassan, U.; Mohammedia, I.I. The Mean Hourly Global Radiation Prediction Models Investigation in Two Different Climate Regions in Morocco. Int. J. Renew. Energy Res. 2012, 2, 608–617. | spa |
dcterms.references | Yao, W.; Li, Z.; Xiu, T.; Lu, Y.; Li, X. New decomposition models to estimate hourly global solar radiation from the daily value. Sol. Energy 2015, 120, 87–99. [CrossRef] | spa |
dcterms.references | Power Data Access Viewer. 2020. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 1 March 2020). | spa |
dcterms.references | Goswami, Y. Principles of Solar Engineering, 3rd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2015. | spa |
dcterms.references | Moreno-Gamboa, F.; Escudero-Atehortua, A.; Nieto-Londoño, C. Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods. Therm. Sci. Eng. Prog. 2020, 20, 100679. [CrossRef] | spa |
dcterms.references | Romero, M.; Buck, R.; Pacheco, J.E. An update on solar central receiver systems, projects, and technologies. J. Sol. Energy Eng. 2002, 124, 98–108. [CrossRef] | spa |
dcterms.references | Duffie, J.; Beckman, W. Solar Engineering of Thermal Processes, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. | spa |
dcterms.references | Chen, L.; Ni, N.; Sun, F. FTT Performance of a closed regenerative brayton cycle coupled to variable-temperature heat reservoir. In Proceedings of the International Conference on Marine Engineering, Varna, Bulgaria, 2–7 June 1996; pp. 371–1996. | spa |
dcterms.references | Zhai, H.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z. Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas. Appl. Energy 2009, 86, 1395–1404. [CrossRef] | spa |
dcterms.references | Zare, V.; Hasanzadeh, M. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants. Energy Convers. Manag. 2016, 128, 227–237. [CrossRef] | spa |
dcterms.references | Atif, M.; Al-Sulaiman, F.A. Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations. Renew. Sustain. Energy Rev. 2017, 68, 153–167. [CrossRef] | spa |
dcterms.references | Yue, T.; Lior, N. Thermal hybrid power systems using multiple heat sources of different temperature: Thermodynamic analysis for Brayton cycles. Energy 2018, 165, 639–665. [CrossRef] | spa |
dcterms.references | Petela, R. Exergy of undiluted thermal radiation. Sol. Energy 2003, 74, 469–488. [CrossRef] | spa |
dcterms.references | Parrot, L.E. Theoretical upper limit to the conversion efficiency of solar energy. Sol. Energy 1978, 21, 227–229. [CrossRef] | spa |
dcterms.references | Neises, T.; Turchi, C. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications. Energy Procedia 2014, 49, 1187–1196. [CrossRef] | spa |
dcterms.references | Lee, H.J.; Kim, H.; Jang, C. Compatibility of Candidate Structural Materials in High-Temperature S-CO2 Environment. In Proceedings of the 4th International Symposium—Supercritical CO2 Power Cycles, Pittsburgh, PA, USA, 9–10 September 2014; pp. 1–9. | spa |
dcterms.references | Ahn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 2015, 47, 647–661. [CrossRef] | spa |
dcterms.references | Chai, L.; Tassou, S.A. A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles. Therm. Sci. Eng. Prog. 2020, 18, 100543. [CrossRef] | spa |
dcterms.references | CarbonDioxide—CoolProp 6.3.1dev Documentation. Available online: http://www.coolprop.org/dev/fluid_properties/fluids/ CarbonDioxide.html (accessed on 21 March 2020). | spa |
dcterms.references | Modelica Association. Modelica.Media.Air.DryAirNasa. Available online: https://doc.modelica.org/Modelica%204.0.0/ Resources/helpWSM/Modelica/Modelica.Media.Air.DryAirNasa.html (accessed on 20 March 2021) | spa |
dcterms.references | Helium—CoolProp 6.3.1dev Documentation. Available online: http://www.coolprop.org/dev/fluid_properties/fluids/Helium. html (accessed on 21 March 2020). | spa |
dcterms.references | Moreno-Gamboa, F.; Nieto-Londoño, C. Hybrid Brayton Multi-stage Concentrated Solar Power Plant Energy and Exergy Performance Study. J. Energy Resour. Technol. 2021, 143, 1–11. [CrossRef] | spa |
dcterms.references | Ramírez-Cerpa, E.; Acosta-Coll, M.; Vélez-Zapata, J. Análisis de condiciones climatológicas de precipitaciones de corto plazo en zonas urbanas: Caso de estudio Barranquilla, Colombia. Idesia 2017, 35, 87–94. [CrossRef] | spa |
dcterms.references | Kotas, T.J. The Exergy Method of Thermal Plant Analysis; Kreiger Publishing Company: Malabar, FL, USA, 1995. | spa |
dc.identifier.doi | /10.3390/su14159479 | |
dc.relation.citationedition | Vol.14 No.15 (2022) | spa |
dc.relation.citationendpage | 24 | spa |
dc.relation.citationissue | 15 (2022) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 14 | spa |
dc.relation.cites | Moreno-Gamboa, F.; Escudero-Atehortua, A.; Nieto-Londoño, C. Alternatives to Improve Performance and Operation of a Hybrid Solar Thermal Power Plant Using Hybrid Closed Brayton Cycle. Sustainability 2022, 14, 9479. https://doi.org/10.3390/su14159479 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Brayton cycle | eng |
dc.subject.proposal | concentrated solar power | eng |
dc.subject.proposal | hybrid solar thermal power plant hybrid | eng |
dc.subject.proposal | exergy analysis | eng |
dc.subject.proposal | working fluid selection | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |