Mostrar el registro sencillo del ítem

dc.contributor.authorOrjuela Abril, Martha Sofia
dc.contributor.authorPardo García, Carlos Eduardo
dc.contributor.authorPabón León, Jhon
dc.date.accessioned2022-11-21T22:42:36Z
dc.date.available2022-11-21T22:42:36Z
dc.date.issued2021-02-18
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6581
dc.description.abstractCurrently, internal combustion engines contribute to the problem of global warming due to their need to use products derived from fossil resources. To mitigate the above problem, this study proposes the use of coatings on the cylinder bore in order to reduce fuel consumption and polluting emissions. Therefore, in the present study a numerical model is developed in which the tribological behavior, heat fluxes, and leakage of the combustion gases in the chamber are considered to evaluate the influence of the coating. Nickel nanocomposite (NNC) and diamond-like carbon (DLC) coatings are considered in the study. The results demonstrate that the NNC coating produces a 32% reduction in the total friction force of the compression ring. The estimated maximum temperatures for the lubricating oil were 214, 202, and 194 ◦C for the DLC, steel, and NNC materials. Increasing the temperature in the DLC coating can cause a reduction in the tribological performance of the lubricant. The estimates made show that the implementation of the NNC coating allows a maximum reduction of 5.28 ton of fuel and 39.30 kg of CO emissions, which are based on the global fleet of diesel engines forecast for the year 2025 (corresponding to one hundred and eighty million engines) and a test time of 1800 s. The proposed numerical model allows future analyses to be carried out for other types of materials used as coatings. Additionally, the model can be expanded and adapted to consider other systems that involve friction processes in the engine.eng
dc.format.extent23 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherLubricantsspa
dc.relation.ispartofLubricants. Vol. 9 N°.2. (2021)
dc.rightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2075-4442/9/2/19spa
dc.titleNumerical and Experimental Analysis of the Potential Fuel Savings and Reduction in CO Emissions by Implementing Cylinder Bore Coating Materials Applied to Diesel Engineseng
dc.typeArtículo de revistaspa
dcterms.referencesForero, J.D.; Taborda, L.L.; Silvera, A.B. Characterization of the Performance of Centrifugal Pumps Powered by a Diesel Engine in Dredging Applications. Int. Rev. Mech. Eng. (IREME) 2019, 13, 11spa
dcterms.referencesOrozco, T.; Herrera, M.; Forero, J.D. CFD Study of Heat Exchangers Applied in Brayton Cycles: A Case Study in Supercritical Condition Using Carbon Dioxide as Working Fluid. Int. Rev. Model. Simulations (IREMOS) 2019, 12, 72–81.spa
dcterms.referencesObregon, L.; Valencia, G.; Forero, J.D. Efficiency Optimization Study of a Centrifugal Pump for Industrial Dredging Applications Using CFD. Int. Rev. Model. Simulations (IREMOS) 2019, 12, 245.spa
dcterms.referencesOchoa, G.V.; Peñaloza, C.A.; Forero, J.D. Thermo-Economic Assessment of a Gas Microturbine-Absorption Chiller Trigeneration System under Different Compressor Inlet Air Temperatures. Energies 2019, 12, 4643.spa
dcterms.referencesOchoa, G.V.; Isaza-Roldan, C.; Forero, J.D. Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317.spa
dcterms.referencesAmador, G.; Forero, J.D.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V.; Orozco, W. Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number. J. Energy Resour. Technol. 2017, 139, 042205.spa
dcterms.referencesDuarte, J.; Garcia, J.; Jiménez, J.; Sanjuan, M.E.; Bula, A.; González, J. Auto-Ignition Control in Spark-Ignition Engines Using Internal Model Control Structure. J. Energy Resour. Technol. 2017, 139, 022201.spa
dcterms.referencesOrozco, W.; Acuña, N.; Forero, J.D. Characterization of Emissions in Low Displacement Diesel Engines Using Biodiesel and Energy Recovery System. Int. Rev. Mech. Eng. (IREME) 2017, 13, 420spa
dcterms.referencesRahnejat, H. Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends; Woodhead Publishing: Cambridge, UK, 2010.spa
dcterms.referencesRichardson, D.E. Review of Power Cylinder Friction for Diesel Engines. J. Eng. Gas Turbines Power 2000, 122, 506–519.spa
dcterms.referencesOchoa, G.V.; Gutierrez, J.C.; Forero, J.D. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resources 2020, 9, 2.spa
dcterms.referencesHolmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284.spa
dcterms.referencesHolmberg, K.; Andersson, P.; Nylund, N.-O.; Mäkelä, K.; Erdemir, A. Global energy consumption due to friction in trucks and buses. Tribol. Int. 2014, 78, 94–114.spa
dcterms.referencesHolmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234.spa
dcterms.referencesMa, M.-T.; Sherrington, I.; Smith, E.H. Analysis of lubrication and friction for a complete piston-ring pack with an improved oil availability model: Part 1: Circumferentially uniform film. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 1997, 211, 1–15.spa
dcterms.referencesMa, Z.; Henein, N.A.; Bryzik, W. A Model for Wear and Friction in Cylinder Liners and Piston Rings. Tribol. Trans. 2006, 49, 315–327.spa
dcterms.referencesMishra, P.C.; Balakrishnan, S.; Rahnejat, H. Tribology of compression ring-to-cylinder contact at reversal. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2008, 222, 815–826.spa
dcterms.referencesMishra, P.C. Tribodynamic modeling of piston compression ring and cylinder liner conjunction in high-pressure zone of engine cycle. Int. J. Adv. Manuf. Technol. 2013, 66, 1075–1085.spa
dcterms.referencesRahmani, R.; Theodossiades, S.; Rahnejat, H.; Fitzsimons, B. Transient elastohydrodynamic lubrication of rough new or worn piston compression ring conjunction with an out-of-round cylinder bore. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 284–305.spa
dcterms.referencesBaker, C.; Theodossiades, S.; Rahmani, R.; Rahnejat, H.; Fitzsimons, B. On the Transient Three-Dimensional Tribodynamics of Internal Combustion Engine Top Compression Ring. J. Eng. Gas Turbines Power 2017, 139, 062801.spa
dcterms.referencesMorris, N.; Rahmani, R.; Rahnejat, H.; King, P.D.; Fitzsimons, B. Tribology of piston compression ring conjunction under transient thermal mixed regime of lubrication. Tribol. Int. 2013, 59, 248–258.spa
dcterms.referencesRahmani, R.; Rahnejat, H.; Fitzsimons, B.; Dowson, D. The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction. Appl. Energy 2017, 191, 568–581.spa
dcterms.referencesMorris, N.; Mohammadpour, M.; Rahmani, R.; Johns-Rahnejat, P.M.; Rahnejat, H.; Dowson, D. Effect of cylinder deactivation on tribological performance of piston compression ring and connecting rod bearing. Tribol. Int. 2018, 120, 243–254.spa
dcterms.referencesSaidur, R.; Rezaei, M.; Muzammil, W.K.; Hassan, M.H.; Paria, S.; Hasanuzzaman, M. Technologies to recover exhaust heat from internal combustion engines. Renew. Sustain. Energy Rev. 2012, 16, 5649–5659.spa
dcterms.referencesLiu, Z.; Meng, X.; Wen, C.; Yu, S.; Zhou, Z. On the oil-gas-solid mixed bearing between compression ring and cylinder liner under starved lubrication and high boundary pressures. Tribol. Int. 2019, 140, 105869.spa
dcterms.referencesRoensch, M.M. Piston-Ring Coatings and Their Effect on Ring and Bore Wear. SAE Trans. 1940, 221–228.spa
dcterms.referencesHowell-Smith, S.; Rahnejat, H.; King, P.D.; Dowson, D. Reducing in-cylinder parasitic losses through surface modification and coating. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 391–402.spa
dcterms.referencesDahotre, N.B.; Nayak, S. Nanocoatings for engine application. Surf. Coatings Technol. 2005, 194, 58–67.spa
dcterms.referencesRejowski, E.D.; Mordente, P., Sr.; Pillis, M.F.; Casserly, T. Application of DLC Coating in Cylinder Liners for Friction Reduction; Technical Paper; SAE: Warrendale, PA, USA, 2012.spa
dcterms.referencesYuan, C.; Ren, H.; Xu, J. Experiment on the ignition performances of a free-piston diesel engine alternator. Appl. Therm. Eng. 2018, 134, 537–545.spa
dcterms.referencesKim, D.; Ito, A.; Ishikawa, Y.; Osawa, K.; Iwasaki, Y. Friction Characteristics of Steel Pistons for Diesel Engines. J. Mater. Res. Technol. 2012, 1, 96–102.spa
dcterms.referencesTan, Y.-C.; Ripin, Z.M. Technique to determine instantaneous piston skirt friction during piston slap. Tribol. Int. 2014, 74, 145–153.spa
dcterms.referencesMoffat, A.; Barnes, S.; Mellor, B.; Reed, P. The effect of silicon content on long crack fatigue behaviour of aluminium–silicon piston alloys at elevated temperature. Int. J. Fatigue 2005, 27, 1564–1570.spa
dcterms.referencesYao, Z.-M.; Qian, Z.-Q.; Li, R.; Hu, E. Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy. Energy 2019, 176, 991–1006.spa
dcterms.referencesMahato, A.; Xia, S.; Perry, T.; Sachdev, A.; Biswas, S.K. Role of silicon in resisting subsurface plastic deformation in tribology of aluminium–silicon alloys. Tribol. Int. 2010, 43, 381–387.spa
dcterms.referencesVural, E. The Study of Microstructure and Mechanical Properties of Diesel Engine Piston Coated with Carbide Composites by Using HVOF Method. Trans. Indian Inst. Met. 2020, 73, 2613–2622.spa
dcterms.referencesVadivel, A.; Periyasamy, S. Experimental Investigation of Thermal Barrier (8YSZ-MGO-TIO2) Coated Piston used in Diesel Engine. J. Appl. Fluid Mech. 2020, 13, 1157–1165.spa
dcterms.referencesYang, W.; Li, X.-R.; Zhao, W.-H.; Kang, Y.-N.; Liu, F.-S. Effect of Layered-Port VVT on Performance of Opposed-Piston Two-Stroke Diesel Engine. J. Energy Eng. 2019, 145, 04019027.spa
dcterms.referencesYao, Z.; Hu, K.; Li, R. Enhanced high-temperature thermal fatigue property of aluminum alloy piston with Nano PYSZ thermal barrier coatings. J. Alloys Compd. 2019, 790, 466–479.spa
dcterms.referencesNguyen, C.L.; Preston, A.; Tran, A.T.; Dickinson, M.; Metson, J.B. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures. Appl. Surf. Sci. 2016, 377, 174–179.spa
dcterms.referencesChen, W.-C.; Lin, H.-M.; Uan, J.-Y. Formation and characterization of self-lubricated carbide layer on AA6082 Al–Mg–Si aluminum alloy by electrical discharge alloying process. Trans. Nonferrous Met. Soc. China 2016, 26, 3205–3218.spa
dcterms.referencesChi, Y.; Gu, G.; Yu, H.; Chen, C. Laser surface alloying on aluminum and its alloys: A review. Opt. Lasers Eng. 2018, 100, 23–37.spa
dcterms.referencesPerera, M.S.M.; Theodossiades, S.; Rahnejat, H. Elasto-multi-body dynamics of internal combustion engines with tribological conjunctions. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 2010, 224, 261–277.spa
dcterms.referencesConsuegra, F.; Bula, A.; Guillín, W.; Sánchez, J.; Forero, J.D. Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines. Energies 2019, 12, 1437.spa
dcterms.referencesLyubarskyy, P.; Bartel, D. 2D CFD-model of the piston assembly in a diesel engine for the analysis of piston ring dynamics, mass transport and friction. Tribol. Int. 2016, 104, 352–368.spa
dcterms.referencesCui, J.; Yang, P.; Jin, Z.M.; Dowson, D. Transient elastohydrodynamic analysis of elliptical contacts. Part 3: Non-Newtonian lubricant solution under isothermal and thermal conditions. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2007, 221, 63–73.spa
dcterms.referencesHoupert, L. New Results of Traction Force Calculations in Elastohydrodynamic Contacts. J. Tribol. 1985, 107, 241–245.spa
dcterms.referencesDelprete, C.; Razavykia, A.; Baldissera, P. Detailed analysis of piston secondary motion and tribological performance. Int. J. Engine Res. 2020, 21, 1647–1661.spa
dcterms.referencesSonthalia, A.; Kumar, R.R. The effect of compression ring profile on the friction force in an internal combustion engine. Tribol. Ind. 2013, 35, 74–83.spa
dcterms.referencesAli, M.K.A.; Xianjun, H.; Turkson, R.F.; Ezzat, M. An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 2016, 230, 329–349.spa
dcterms.referencesHusain, S.Q.; Singh, K.P. Calculation of Lubricating Oil Film Thickness between Piston Rings and Cylinder Liner. In Proceedings of the 1st National Conference on Advances in Mechanical Engineering (NCAME 2011), Chandigarh, India, 20–21 May 2011.spa
dcterms.referencesZavos, A.B.; Nikolakopoulos, P.G. Simulation of piston ring tribology with surface texturing for internal combustion engines. Lubr. Sci. 2015, 27, 151–176.spa
dcterms.referencesBalakrishnan, S.; Rahnejat, H. Isothermal transient analysis of piston skirt-to-cylinder wall contacts under combined axial, lateral and tilting motion. J. Phys. D Appl. Phys. 2005, 38, 787–799.spa
dcterms.referencesBooker, J.F. Basic Equations for Fluid Films with Variable Properties. J. Tribol. 1989, 111, 475–479.spa
dcterms.referencesIrimescu, A.; Di Iorio, S.; Merola, S.S.; Sementa, P.; Vaglieco, B.M. Evaluation of compression ratio and blow-by rates for spark ignition engines based on in-cylinder pressure trace analysis. Energy Convers. Manag. 2018, 162, 98–108.spa
dcterms.referencesZucrow, M.J.; Hoffman, J.D. Gas Dynamics. In Fundamental Fluid Mechanics for the Practicing Engineer; CRC Press: Boca Raton, FL, USA, 2018; pp. 198–297.spa
dcterms.referencesDieck, R.H. Measurement Uncertainty: Methods and Applications, 4th ed.; ISA: Durham, NC, USA, 2007.spa
dcterms.referencesUmer, J.; Morris, N.J.; Leighton, M.; Rahmani, R.; Howell-Smith, S.; Wild, R.; Rahnejat, H. Asperity level tribological investigation of automotive bore material and coatings. Tribol. Int. 2018, 117, 131–140.spa
dcterms.referencesTomanik, E.; Profito, F.J.; Zachariadis, D.C. Modelling the hydrodynamic support of cylinder bore and piston rings with laser textured surfaces. Tribol. Int. 2013, 59, 90–96.spa
dcterms.referencesHumphrey, E.; Morris, N.J.; Rahmani, R.; Rahnejat, H. Multiscale boundary frictional performance of diamond like carbon coatings. Tribol. Int. 2020, 149, 105539.spa
dcterms.referencesZavos, A.; Nikolakopoulos, P.G. Tribology of new thin compression ring of fired engine under controlled conditions—A combined experimental and numerical study. Tribol. Int. 2018, 128, 214–230.spa
dcterms.referencesKoch, F.; Decker, P.; Gülpen, R.; Quadflieg, F.-J.; Loeprecht, M. Cylinder Liner Deformation Analysis—Measurements and Calculations; Technical Paper; SAE: Warrendale, PA, USA, 1998.spa
dcterms.referencesGore, M.; Theaker, M.; Howell-Smith, S.; Rahnejat, H.; King, P.D. Direct measurement of piston friction of internal-combustion engines using the floating-liner principle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 344–354.spa
dcterms.referencesExxonMobil. The Outlook for Energy: A View to 2040 Contents. 2017. Available online: http://oilproduction.net/files/2017 _Outlook_for_Energy_highlights.pdf (accessed on 12 December 2020).spa
dc.contributor.corporatenameLubricantsspa
dc.identifier.doihttps://doi.org/10.3390/lubricants9020019
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol. 9 N°.2. (2021)spa
dc.relation.citationendpage23spa
dc.relation.citationissue2 (2021)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume9spa
dc.relation.citesAbril, S. O., García, C. P., & León, J. P. (2021). Numerical and Experimental Analysis of the Potential Fuel Savings and Reduction in CO Emissions by Implementing Cylinder Bore Coating Materials Applied to Diesel Engines. power, 510, 16.
dc.relation.ispartofjournalLubricantsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalcoatingseng
dc.subject.proposalcompression ringeng
dc.subject.proposaldiamond-like carboneng
dc.subject.proposalfuel economyeng
dc.subject.proposalinternal combustion engineseng
dc.subject.proposalnickel nanocompositeeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).