dc.contributor.author | Gamboa Mora, María Cristina | |
dc.contributor.author | Rincón Gamboa, Sandra M. | |
dc.contributor.author | Ardila Leal, Leidy Diana | |
dc.contributor.author | Poutou-Piñales, Raúl Alberto | |
dc.contributor.author | Pedroza, Aura | |
dc.contributor.author | Quevedo, Balkys | |
dc.date.accessioned | 2022-11-19T16:04:47Z | |
dc.date.available | 2022-11-19T16:04:47Z | |
dc.date.issued | 2022-07-11 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6557 | |
dc.description.abstract | The first traces of Tetracycline (TE) were detected in human skeletons from Sudan and
Egypt, finding that it may be related to the diet of the time, the use of some dyes, and the use of
soils loaded with microorganisms, such as Streptomyces spp., among other microorganisms capable
of producing antibiotics. However, most people only recognise authors dating between 1904 and
1940, such as Ehrlich, Domagk, and Fleming. Antibiotics are the therapeutic option for countless
infections treatment; unfortunately, they are the second most common group of drugs in wastewaters
worldwide due to failures in industrial waste treatments (pharmaceutics, hospitals, senior residences)
and their irrational use in humans and animals. The main antibiotics problem lies in delivered and
non-prescribed human use, use in livestock as growth promoters, and crop cultivation as biocides
(regulated activities that have not complied in some places). This practice has led to the toxicity of
the environment as antibiotics generate eutrophication, water pollution, nutrient imbalance, and
press antibiotic resistance. In addition, the removal of antibiotics is not a required process in global
wastewater treatment standards. This review aims to raise awareness of the negative impact of
antibiotics as residues and physical, chemical, and biological treatments for their degradation. We
discuss the high cost of physical and chemical treatments, the risk of using chemicals that worsen
the situation, and the fact that each antibiotic class can be transformed differently with each of these
treatments and generate new compounds that could be more toxic than the original ones; also, we
discuss the use of enzymes for antibiotic degradation, with emphasis on laccases. | eng |
dc.format.extent | 44 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Molecules | spa |
dc.relation.ispartof | Molecules. vol 27 No°14[2022] | |
dc.rights | © 2022 by the authors | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.mdpi.com/1420-3049/27/14/4436 | spa |
dc.title | Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134. | spa |
dcterms.references | Spagnolo, F.; Trujillo, M.; Dennehya, J.J. Why do antibiotics exist? mBio 2021, 12, e01966-21. | spa |
dcterms.references | Checa Artos, M.; Sosa del Castillo, D.; Ruiz Barzola, O.; Barcos-Arias, M. Presencia de productos farmacéuticos en el agua y su impacto en el ambiente. Bionat 2021, 6, 1618–1627. | spa |
dcterms.references | Becker, D.; Varela Della Giustina, S.; Rodriguez-Mozaz, S.; Schoevaart, R.; Barcelo, D.; de Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J.; de Gunzburg, J.; Couillerot, O.; et al. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase—Degradation of compounds does not always eliminate toxicity. Bioresour. Technol. 2016, 219, 500–509. | spa |
dcterms.references | Silbergeld, E.K.; Graham, J.; Price, L.B. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health 2008, 29, 151–169. | spa |
dcterms.references | Taylor, P.; Reeder, R. Antibiotic use on crops in low and middle-income countries based on recommendations made by agricultural advisors. CABI Agric. Biosci. 2020, 1, 1. | spa |
dcterms.references | U.S. Food and Drug Administration (FDA). Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals; U.S. Food and Drug Administration (FDA): Washington, DC, USA, 2019; p. 49. | spa |
dcterms.references | Sarmah, A.K.; Meyer, M.T.; Boxall, A.B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. | spa |
dcterms.references | Osei Sekyere, J. Antibiotic Types and Handling Practices in Disease Management among Pig Farms in Ashanti Region, Ghana. J. Vet. Med. 2014, 2014, 531952. | spa |
dcterms.references | Ferrari, B.t.; Paxéus, N.; Giudice, R.L.; Pollio, A.; Garric, J. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol. Environ. Safe 2003, 55, 359–370. | spa |
dcterms.references | Arenas, N.E.; Moreno-Melo, V. Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática. Infection 2018, 22, 110–119. | spa |
dcterms.references | Mobarki, N.; Almerabi, B.; Hattan, A. Antibiotic resistance crisis. Int. J. Med. Devel. Count. 2019, 40, 561–564. | spa |
dcterms.references | Leder, C.; Suk, M.; Lorenz, S.; Rastogi, T.; Peifer, C.; Kietzmann, M.; Jonas, D.; Buck, M.; Pahl, A.; Kümmerer, K. Reducing Environmental Pollution by Antibiotics through Design for Environmental Degradation. ACS Sustain. Chem. Eng. 2021, 9, 9358–9368. | spa |
dcterms.references | Sundararaman, S.; Aravind Kumar, J.; Deivasigamani, P.; Devarajan, Y. Emerging pharma residue contaminants: Occurrence, monitoring, risk and fate assessment—A challenge to water resource management. Sci. Total. Environ. 2022, 825, 153897. | spa |
dcterms.references | Szyma ´nska, U.; Wiergowski, M.; Sołtyszewski, I.; Kuzemko, J.; Wiergowska, G.; Wo´zniak, M.K. Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives. Microchem. J. 2019, 147, 729–740. | spa |
dcterms.references | Bedner, M.; Maccrehan, W.A. Transformation of acetaminophen by chlorination produces the toxicants 1,4-Benzoquinone and N-Acetyl-p-benzoquinone Imine. Environ. Sci. Technol. 2006, 40, 516–522. | spa |
dcterms.references | Poutou, R.A.; Sánchez, L.; Díaz, K.; Máttar, S. Mecanismos de resistencia a los antibióticos betha-lactámicos. Med. UIS 1999, 13, 172–177. | spa |
dcterms.references | Denyer, S.P.; Hodges, N.A.; Gorman, S.P. Hugo and Russell’s Pharmaceutical Microbiology; Blackwell Science, Inc.: Oxford, UK, 2004. | spa |
dcterms.references | European Centre for Disease Prevention and Control (ECDC). Antimicrobial Consumption in the EU/EEA; Annual Epidemiological Report for 2019; European Centre for Disease Prevention and Control (ECDC): Stockholm, Sweden, 2019; p. 25. | spa |
dcterms.references | Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing (CLSI M100-S17); Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2007; p. 182. | spa |
dcterms.references | World Health Organization (WHO). WHO Report on Surveillance of Antibiotic Consumption: 2016–2018 Early Implementation; World Health Organization (WHO): Geneva, Switzerland, 2018; p. 127. | spa |
dcterms.references | World Health Organization. Critically important antimicrobials for human medicine. In Ranking of Medically Important Antimicrobials for Risk Management of Antimicrobial Resistance due to Non-Human Use, 6th Revision 2018; WHO: Geneva, Switzerland, 2018. | spa |
dcterms.references | Forge, A.; Schacht, J. Aminoglycoside antibiotics. Audiol. Neurootol. 2000, 5, 3–22. | spa |
dcterms.references | Vigliarolo, L.O.; Di Pinto, P.M.; Suárez, M.C.; Lopardo, H.A.; Viegas Caetano, J.A. Antibióticos: Clasificación, Estructura, Mecanismos de Acción y Resistencia; Lopardo, H.A., Ed.; EDULP: Buenos Aires, Argentina, 2020; p. 191. | spa |
dcterms.references | Suarez, C.; Gudiol, F. Beta-lactam antibiotics. Enferm. Infecc. Microbiol. Clin. 2009, 27, 116–129. | spa |
dcterms.references | El-Gamal, M.I.; Brahim, I.; Hisham, N.; Aladdin, R.; Mohammed, H.; Bahaaeldin, A. Recent updates of carbapenem antibiotics. Eur. J. Med. Chem. 2017, 131, 185–195. | spa |
dcterms.references | El-Shaboury, S.R.; Saleh, G.A.; Mohamed, F.A.; Rageh, A.H. Analysis of cephalosporin antibiotics. J. Pharm. Biomed. Anal. 2007, 45, 1–19. | spa |
dcterms.references | Brewer, N.S.; Hellinger, W.C. The Monobactams. Mayo. Clin. Proc. 1991, 66, 1152–1157. | spa |
dcterms.references | Garcia-Quetglas, E.; Azanza, J.R.; Sadaba, B.; Gil-Aldea, I. Farmacología de antimicrobianos utilizados en el tratamiento de las infecciones graves por bacterias Grampositivas. Rev. Esp. Quimioterap. 2003, 16, 277–288. | spa |
dcterms.references | Burdette, S.D.; Trotman, R. Tedizolid: The First Once-Daily Oxazolidinone Class Antibiotic. Clin. Infect. Dis. 2015, 61, 1315–1321. | spa |
dcterms.references | Calvo, J.; Martinez-Martinez, L. Mecanismos de acción de los antimicrobianos. Enfem. Infecc. Microbiol. Clín. 2009, 27, 44–52. | spa |
dcterms.references | Flamm, R.K.; Farrell, D.J.; Rhomberg, P.R.; Scangarella-Oman, N.E.; Sader, H.S. Gepotidacin (GSK2140944) In Vitro Activity against Gram-Positive and Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2017, 61, e00468-17. | spa |
dcterms.references | Cholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: Current status and future prospects. J. Antimicrob. Chemother. 2012, 67, 290–298. | spa |
dcterms.references | García-Rodríguez, J.A.; Gutiérrez Zufiaurre, N.; Muñoz Bellido, L.J. Ácido fusídico. Rev. Esp. Quimioterap. 2003, 16, 161–171. | spa |
dcterms.references | Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. | spa |
dcterms.references | Qian, H.; Li, J.; Pan, X.; Sun, Z.; Ye, C.; Jin, G.; Fu, Z. Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. Environ. Toxicol. 2012, 27, 229–237. | spa |
dcterms.references | Wollenberger, L.; Halling-Sorensen, B.; Kusk, K.O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 2000, 40, 723–730. | spa |
dcterms.references | Liljebjelke, K.A.; Hofacre, C.L.; White, D.G.; Ayers, S.; Lee, M.D.; Maurer, J.J. Diversity of Antimicrobial Resistance Phenotypes in Salmonella Isolated from Commercial Poultry Farms. Front. Vet. Sci. 2017, 4, 96. | spa |
dcterms.references | Luczkiewicz, A.; Jankowska, K.; Fudala-Ksiazek, S.; Olanczuk-Neyman, K. Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Res. 2010, 44, 5089–5097. | spa |
dcterms.references | Avent, M.L.; Rogers, B.A.; Cheng, A.C.; Paterson, D.L. Current use of aminoglycosides: Indications, pharmacokinetics and monitoring for toxicity. Intern. Med. J. 2011, 41, 441–449. | spa |
dcterms.references | Turnidge, J. Pharmacodynamics and dosing of aminoglycosides. Infect. Dis. Clin. N. Am. 2003, 17, 503–528. | spa |
dcterms.references | Duarte, J.L.d.S.; Solano, A.M.S.; Arguelho, M.L.P.M.; Tonholo, J.; Martínez-Huitle, C.A.; Zanta, C.L.d.P.e.S. Evaluation of treatment of effluents contaminated with rifampicin by Fenton, electrochemical and associated processes. J. Water Proc. Eng. 2018, 22, 250–257. | spa |
dcterms.references | World Health Organization (WHO). Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2016–2017; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2017; 164p. | spa |
dcterms.references | Havelkova, B.; Beklova, M.; Kovacova, V.; Hlavkova, D.; Pikula, J. Ecotoxicity of selected antibiotics for organisms of aquatic and terrestrial ecosystems. Neuroendocrinol. Lett. 2016, 37, 38–44. | spa |
dcterms.references | Ranjbar, R.; Sami, M. Genetic Investigation of Beta-Lactam Associated Antibiotic Resistance Among Escherichia Coli Strains Isolated from Water Sources. Open Microbiol. J. 2017, 11, 203–210. | spa |
dcterms.references | Hoelle, J.; Johnson, J.R.; Johnston, B.D.; Kinkle, B.; Boczek, L.; Ryu, H.; Hayes, S. Survey of US wastewater for carbapenem-resistant Enterobacteriaceae. J. Water Health 2019, 17, 219–226. | spa |
dcterms.references | Yilmaz, C.; Ozcengiz, G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem. Pharmacol. 2017, 133, 43–62. | spa |
dcterms.references | Das, N.; Madhavan, J.; Selvi, A.; Das, D. An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech. 2019, 9, 231. | spa |
dcterms.references | Barriere, S.L. Pharmacology and Pharmacokinetics of Cefprozil. Clin. Infect. Dis. 1992, 14, S184–S188. | spa |
dcterms.references | Selvi, A.; Salam, J.A.; Das, N. Biodegradation of cefdinir by a novel yeast strain, Ustilago sp. SMN03 isolated from pharmaceutical wastewater. World J. Microbiol. Biotechnol. 2014, 30, 2839–2850. | spa |
dcterms.references | Yu, X.; Tang, X.; Zuo, J.; Zhang, M.; Chen, L.; Li, Z. Distribution and persistence of cephalosporins in cephalosporin producing wastewater using SPE and UPLC-MS/MS method. Sci. Total Environ. 2016, 569–570, 23–30. | spa |
dcterms.references | Bruyndonckx, R.; Adriaenssens, N.; Hens, N.; Versporten, A.; Monnet, D.L.; Molenberghs, G.; Goossens, H.; Weist, K.; Coenen, S.; Group, E.S.-N.s. Consumption of penicillins in the community, European Union/European Economic Area, 1997–2017. J. Antimicrob. Chemother. 2021, 76, ii14–ii21. | spa |
dcterms.references | Bodey, G.P.; Nance, J. Amoxicillin: In Vitro and Pharmacological Studies. Antimicrob. Age Chemother. 1972, 1, 358–362. | spa |
dcterms.references | Ighalo, J.O.; Igwegbe, C.A.; Aniagor, C.O.; Oba, S.N. A review of methods for the removal of penicillins from water. J. Water Prc. Eng. 2021, 39, 101886. | spa |
dcterms.references | Arslan-Alaton, I.; Caglayan, A.E. Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent. Ecotoxicol. Environ. Saf. 2006, 63, 131–140. | spa |
dcterms.references | Szekeres, E.; Baricz, A.; Chiriac, C.M.; Farkas, A.; Opris, O.; Soran, M.L.; Andrei, A.S.; Rudi, K.; Balcazar, J.L.; Dragos, N.; et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ. Pollut. 2017, 225, 304–315. | spa |
dcterms.references | Felis, E.; Kalka, J.; Sochacki, A.; Kowalska, K.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial pharmaceuticals in the aquatic environment—Occurrence and environmental implications. Eur. J. Pharmacol. 2020, 866, 172813. | spa |
dcterms.references | McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. | spa |
dcterms.references | Stein, G.E.; Babinchak, T. Tigecycline: An update. Diagn. Microbiol. Infect. Dis. 2013, 75, 331–336. | spa |
dcterms.references | El-Azazy, M.; El-Shafie, A.S.; Al-Meer, S.; Al-Saad, K.A. Eco-structured Adsorptive Removal of Tigecycline from Wastewater: Date Pits’ Biochar versus the Magnetic Biochar. Nanomaterials 2020, 11, 30. | spa |
dcterms.references | Zurfuh, K.; Poirel, L.; Nordmann, P.; Nuësch-Inderbinen, M.; Chler, H.H.; Stephan, R. Occurrence of the plasmid-borne mcr-1 colistin resistance gene in extended-spectrum-lactamase-producing Enterobacteriaceae in river water and imported vegetable samples in Switzerland. Antimicrob. Age Chemother. 2016, 60, 2594–2595. | spa |
dcterms.references | Hembach, N.; Schmid, F.; Alexander, J.; Hiller, C.; Rogall, E.T.; Schwartz, T. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany. Front. Microbiol. 2017, 8, 1282. | spa |
dcterms.references | Song, X.; Turiel, E.; He, L.; Martin-Esteban, A. Synthesis of Molecularly Imprinted Polymers for the Selective Extraction of Polymyxins from Environmental Water Samples. Polymers 2020, 12, 131. | spa |
dcterms.references | Rincón-Gamboa, S.M.; Poutou-Piñales, R.A.; Carrascal-Camacho, A.K. Antimicrobial resistance of Non-Typhoid Salmonella in meat and meat products. Foods 2021, 10, 1731. | spa |
dcterms.references | Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.-L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118. | spa |
dcterms.references | Managaki, S.; Murata, A.; Takada, H.; Tuyen, B.C.; Chiem, N.H. Distribution of Macrolides, Sulfonamides, and Trimethoprim in Tropical Waters: Ubiquitous Occurrence of Veterinary Antibiotics in the Mekong Delta. Environ. Sci. Technol. 2007, 41, 8004–8010. | spa |
dcterms.references | Zhang, C.; You, S.; Zhang, J.; Qi, W.; Su, R.; He, Z. An effective in-situ method for laccase immobilization: Excellent activity, effective antibiotic removal rate and low potential ecological risk for degradation products. Bioresour. Technol. 2020, 308, 123271. | spa |
dcterms.references | Almeida, L.M.; Gaca, A.; Bispo, P.M.; Lebreton, F.; Saavedra, J.T.; Silva, R.A.; Basilio-Junior, I.D.; Zorzi, F.M.; Filsner, P.H.; Moreno, A.M.; et al. Coexistence of the Oxazolidinone Resistance-Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Front. Public Health 2020, 8, 518. | spa |
dcterms.references | Zhou, Y.; Li, J.; Schwarz, S.; Zhang, S.; Tao, J.; Fan, R.; Walsh, T.R.; Wu, C.; Wang, Y. Mobile oxazolidinone/phenicol resistance gene optrA in chicken Clostridium perfringens. J. Antimicrob. Chemother. 2020, 75, 3067–3069. | spa |
dcterms.references | Timm, A.; Abendschon, P.; Tolgyesi, L.; Horn, H.; Borowska, E. Solar-mediated degradation of linezolid and tedizolid under simulated environmental conditions: Kinetics, transformation and toxicity. Chemosphere 2020, 241, 125111. | spa |
dcterms.references | Shaw, K.J.; Barbachyn, M.R. The oxazolidinones: Past, present, and future. Ann. N. Y. Acad. Sci. 2011, 1241, 48–70. | spa |
dcterms.references | World Health Organization (WHO). Model List of Essential Medicines—22nd List; World Health Organization: Geneva, Switzerland, 2021; 66p. | spa |
dcterms.references | Merazi, Y.; Hammadi, K.; Fedoul, F.F. An investigation of the practices of veterinarians and breeders in the prevalence of antibiotic resistance in poultry farms in Algeria. Nat. Technol. 2021, 13, 14–33. | spa |
dcterms.references | Keating, G.M. Fosfomycin trometamol: A review of its use as a single-dose oral treatment for patients with acute lower urinary tract infections and pregnant women with asymptomatic bacteriuria. Drugs 2013, 73, 1951–1966. | spa |
dcterms.references | Takahata, S.; Ida, T.; Hiraishi, T.; Sakakibara, S.; Maebashi, K.; Terada, S.; Muratani, T.; Matsumoto, T.; Nakahama, C.; Tomono, K. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int. J. Antimicrob. Agents 2010, 35, 333–337. | spa |
dcterms.references | Falagas, M.E.; Athanasaki, F.; Voulgaris, G.L.; Triarides, N.A.; Vardakas, K.Z. Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Int. J. Antimicrob. Agents 2019, 53, 22–28. | spa |
dcterms.references | Zeng, P.; Xie, X.; Song, Y.; Liu, R.; Zhu, C.; Galarneau, A.; Pic, J.S. Ion chromatography as highly suitable method for rapid and accurate determination of antibiotic fosfomycin in pharmaceutical wastewater. Water Sci. Technol. 2014, 69, 2014–2022. | spa |
dcterms.references | Golet, E.M.; Xifra, i.; Siegrist, H.; Alder, A.C.; Giger, W. Environmental exposure Assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 2003, 37, 3243–3249. | spa |
dcterms.references | Zhang, Z.; Cheng, H. Recent Development in Sample Preparation and Analytical Techniques for Determination of Quinolone Residues in Food Products. Crit. Rev. Anal. Chem. 2017, 47, 223–250. | spa |
dcterms.references | Castrignano, E.; Kannan, A.M.; Proctor, K.; Petrie, B.; Hodgen, S.; Feil, E.J.; Lewis, S.E.; Lopardo, L.; Camacho-Munoz, D.; Rice, J.; et al. (Fluoro)quinolones and quinolone resistance genes in the aquatic environment: A river catchment perspective. Water Res. 2020, 182, 116015. | spa |
dcterms.references | Kergaravat, S.V.; Hernandez, S.R.; Gagneten, A.M. Second-, third- and fourth-generation quinolones: Ecotoxicity effects on Daphnia and Ceriodaphnia species. Chemosphere 2021, 262, 127823. | spa |
dcterms.references | Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone antibiotics. Med. Chem. Commun. 2019, 10, 1719–1739. | spa |
dcterms.references | Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542. | spa |
dcterms.references | Oliveira Toledo, S.L.; Silveira Silva, R.M.; Rodrigues dos Santos, I.C.; Lima, W.G.; Rodrigues Ferreira, L.G.; Paiva, M.C. Domestic wastewater treatment plants as sources of macrolide-lincosamide-streptogramin B- and penicillin-resistant Staphylococcus aureus in Brazil. Rev. Colomb. Cien. Quím.-Farm. 2020, 49, 267–279. | spa |
dcterms.references | Guo, X.; Yan, Z.; Zhang, Y.; Xu, W.; Kong, D.; Shan, Z.; Wang, N. Behavior of antibiotic resistance genes under extremely high-level antibiotic selection pressures in pharmaceutical wastewater treatment plants. Sci. Total Environ. 2018, 612, 119–128. | spa |
dcterms.references | Dadashi, M.; Hajikhani, B.; Darban-Sarokhalil, D.; van Belkum, A.; Goudarzi, M. Mupirocin resistance in Staphylococcus aureus: A systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2020, 20, 238–247. | spa |
dcterms.references | Holdiness, M.R. Clinical pharmacokinetics of clofazimine: A review. Clin. Pharmacokinet. 1989, 16, 74–85. | spa |
dcterms.references | Williamson, D.A.; Monecke, S.; Heffernan, H.; Ritchie, S.R.; Roberts, S.A.; Upton, A.; Thomas, M.G.; Fraser, J.D. High usage of topical fusidic acid and rapid clonal expansion of fusidic acid-resistant Staphylococcus aureus: A cautionary tale. Clin. Infect. Dis. 2014, 59, 1451–1454. | spa |
dcterms.references | Hruska, K.; Franek, M. Sulfonamides in the environment: A review and a case report. Vet. Med. 2012, 57, 1–35. | spa |
dcterms.references | Vila-Costa, M.; Gioia, R.; Acena, J.; Perez, S.; Casamayor, E.O.; Dachs, J. Degradation of sulfonamides as a microbial resistance mechanism. Water Res. 2017, 115, 309–317. | spa |
dcterms.references | Scholar, E. Tetracycline. In X Pharm: The Comprehensive Pharmacology Reference; Dowd, F.J., Murrin, L.C., Ralevic, V., Scholar, E.M., Summers, R.J., Tew, K.D., Wecker, L., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 1–4. | spa |
dcterms.references | Pulicharla, R.; Brar, S.K.; Rouissi, T.; Auger, S.; Drogui, P.; Verma, M.; Surampalli, R.Y. Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and ferro-sonication. Ultrason. Sonochem. 2017, 34, 332–342. | spa |
dcterms.references | Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. | spa |
dcterms.references | Page, S.W.; Gautier, P. Use of antimicrobial agents in livestock. Rev. Sci. Tech. 2012, 31, 145–188. | spa |
dcterms.references | El Parlamento Europeo; Consejo de la Unión Europea. Reglamento (UE) 2019/6 del Parlamento Europeo y del Consejo de 11de Diciembre de 2018; El Parlamento Europeo: Washington, DC, USA, 2019; p. 125. | spa |
dcterms.references | World Health Organization. Initiative to Estimate the Global Burden of Foodborne Diseases: Fourth Formal Meeting of the Foodborne Disease Burden Epidemiology Reference Group (FERG): Sharing New Results, Making Future Plans, and Preparing Ground for the Countries; World Health Organization: Geneva, Switzerland, 2014; p. 108. | spa |
dcterms.references | Destro, M.T.; Ribeiro, V.B. Foodborne Zoonoses. In Encyclopedia of Meat Sciences; Devine, C., Dikeman, M., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 17–21. | spa |
dcterms.references | Gebeyehu, D.T. Antibiotic Resistance Development in Animal Production: A Cross-Sectional Study. Vet. Med. Res. Rep. 2021, 12, 101–108. | spa |
dcterms.references | Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. | spa |
dcterms.references | Checcucci, A.; Trevisi, P.; Luise, D.; Modesto, M.; Blasioli, S.; Braschi, I.; Mattarelli, P. Exploring the Animal Waste Resistome: The Spread of Antimicrobial Resistance Genes Through the Use of Livestock Manure. Front. Microbiol. 2020, 11, 1416. | spa |
dcterms.references | Domenech, E.; Jimenez-Belenguer, A.; Amoros, J.A.; Ferrus, M.A.; Escriche, I. Prevalence and antimicrobial resistance of Listeria monocytogenes and Salmonella strains isolated in ready-to-eat foods in Eastern Spain. Food Cont. 2015, 47, 120–125. | spa |
dcterms.references | Sallam, K.I.; Mohammed, M.A.; Hassan, M.A.; Tamura, T. Prevalence, molecular identification and antimicrobial resistance profile of Salmonella serovars isolated from retail beef products in Mansoura, Egypt. Food Cont. 2014, 38, 209–214. | spa |
dcterms.references | Abd-Elghany, S.M.; Sallam, K.I.; Abd-Elkhalek, A.; Tamura, T. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets. Epidemiol. Infect. 2015, 143, 997–1003. | spa |
dcterms.references | Nguyen, D.T.A.; Kanki, M.; Nguyen, P.D.; Le, H.T.; Ngo, P.T.; Tran, D.N.M.; Le, N.H.; Van Dang, C.; Kawai, T.; Kawahara, R.; et al. Prevalence, antibiotic resistance, and extended-spectrum and AmpC β-lactamase productivity of Salmonella isolates from raw meat and seafood samples in Ho Chi Minh City, Vietnam. Int. J. Food Microbiol. 2016, 236, 115–122. | spa |
dcterms.references | Ayala-Romero, C.; Ballen-Parada, C.; Rico-Gaitán, M.; Chamorro-Tobar, I.; Zambrano-Moreno, D.; Poutou-Piñales, R.; CarrascalCamacho, A. Prevalence of Salmonella spp., in mesenteric pig’s ganglia at Colombian benefit plants. Rev. MVZ-Córdoba 2018, 23, 6474–6486. | spa |
dcterms.references | Löfström, C.; Hansen, T.; Maurischat, S.; Malorny, B. Salmonella: Salmonellosis. In Encyclopedia of Food and Health; Caballero, B., Finglas, P., Toldra, F., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 701–705. | spa |
dcterms.references | Sánchez-Vargas, F.M.; Abu-El-Haija, M.A.; Gómez-Duarte, O.G. Salmonella infections: An update on epidemiology, management, and prevention. Travel. Med. Infect. Dis. 2011, 9, 263–277. | spa |
dcterms.references | De Jong, A.; Bywater, R.; Butty, P.; Deroover, E.; Godinho, K.; Klein, U.; Marion, H.; Simjee, S.; Smets, K.; Thomas, V.; et al. A pan-European survey of antimicrobial susceptibility towards human-use antimicrobial drugs among zoonotic and commensal enteric bacteria isolated from healthy food-producing animals. J. Antimicrob. Chemother. 2009, 63, 733–744. | spa |
dcterms.references | Antunes, P.; Mourão, J.; Campos, J.; Peixe, L. Salmonellosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 110–121. | spa |
dcterms.references | Marquis, H.; Drevets, D.A.; Bronze, M.S.; Kathariou, S.; Golos, T.G.; Iruretagoyena, J.I. Pathogenesis of Listeria Monocytogenes in Humans. In HUMAN Emerging and Re-emerging Infections: Viral and Parasitic Infections; Singh, S.K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 749–772. | spa |
dcterms.references | Torres, K.J.; Sierra, S.C.; Poutou, R.A.; Vera, H.; Carrascal, A.K.; Mercado, M. Incidencia y diagnóstico de Listeria monocytogenes; microorganismo zoonótico emergente en la industria de alimentos. Rev. UDCA Act. Divulg. Cient 2004, 7, 25–57. | spa |
dcterms.references | Torres, K.J.; Sierra, S.C.; Poutou, R.A.; Carrascal, A.K.; Mercado, M. Patogénesis de Listeria monocytogenes, microorganismo zoonótico emergente. Rev. MVZ-Córdoba 2005, 10, 511–543. | spa |
dcterms.references | Belalcazar, M.E.; Poutou, R.A.; Torres, K.J.; Gallegos, J.M.; Torres, O.; Carrascal, A.K. Listeria monocytogenes y listeriosis animal. Rev. UDCA Act. Inv. Cient. 2005, 8, 3–16. | spa |
dcterms.references | Ruiz-Bolivar, Z.; Neuque-Rico, M.C.; Poutou-Piñales, R.A.; Carrascal-Camacho, A.K.; Máttar-Velilla, S. Antimicrobial susceptibility of L. monocytogenes food-isolates from different cities of Colombia. Foodborne. Path Dis. 2011, 8, 913–919. | spa |
dcterms.references | Allen, K.J.; Wałecka-Zacharska, E.; Chen, J.C.; Kosek-Paszkowska, K.; Devlieghere, F.; Van Meervenne, E.; Osek, J.; Wieczorek, K.; Bania, J. Listeria monocytogenes—An examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiol. 2016, 54, 178–189. | spa |
dcterms.references | Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control. 2006, 34, s3–s10. | spa |
dcterms.references | Morejón García, M. Betalactamasas de espectro extendido. Rev. Cubana. Med. 2013, 52, 272–280. | spa |
dcterms.references | Sanseverino, I.; Navarro Cuenca, A.; Loos, R.; Marinov, D.; Lettieri, T. State of the Art on the Contribution of Water to Antimicrobial Resistance, EUR 29592; Publications Office of the European Union: Luxembourg, 2018; 110p, ISBN 978-92-79-98478-5. | spa |
dcterms.references | Grohmann, E.; Muth, G.; Espinosa, M. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 2003, 67, 277–301. | spa |
dcterms.references | Poutou, R.A.; Mattar, S. Genética Molecular Bacteriana. In Bacteriología Clínica: Estudio Etiológico de las Enfermedades Infecciosas de Origen Bacteriano; Editorial: Universidad de Córdoba Vicerrectoría de Investigación y Extensiones; Asociación Colombiana de Infectología (ACIN): Córdoba, Spain, 2002. | spa |
dcterms.references | Arutyunov, D.; Frost, L.S. F conjugation: Back to the beginning. Plasmid 2013, 70, 18–32. | spa |
dcterms.references | Kohler, V.; Keller, W.; Grohmann, E. Regulation of Gram-Positive Conjugation. Front. Microbiol. 2019, 10, 1134. | spa |
dcterms.references | Luo, Y.; Xu, L.; Rysz, M.; Wang, Y.; Zhang, H.; Alvarez, P.J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 2011, 45, 1827–1833. | spa |
dcterms.references | Ramírez, G.D.; Vélez, G.; Rondón, I.S. Determinación de residuos de antibióticos y tiempo de retiro en leche proveniente del municipio de Cartago (Valle del Cauca). Rev. Col. Cienc. Anim. 2012, 5, 25–31. | spa |
dcterms.references | Xu, D.; Xiao, Y.; Pan, H.; Mei, Y. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicol. Environ. Saf. 2019, 174, 43–47. | spa |
dcterms.references | Song, Y.; Han, Z.; Song, K.; Zhen, T. Antibiotic Consumption Trends in China: Evidence From Six-Year Surveillance Sales Records in Shandong Province. Front. Pharmacol. 2020, 11, 491. | spa |
dcterms.references | Anh, H.Q.; Le, T.P.Q.; Da Le, N.; Lu, X.X.; Duong, T.T.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Oh, N.H.; Oeurng, C.; et al. Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Sci. Total Environ. 2021, 764, 142865. | spa |
dcterms.references | Centers for Disease Control and Prevention (Ed.) Antibiotic Use in the United States, 2021 Update: Progress and Opportunities; US Department of Health and Human Services: Atlanta, GA, USA, 2021; 26p. | spa |
dcterms.references | Instituto Nacional de Salud (INS). Consumo de Antibióticos en el Ambito Hospitalario, Colombia, 2017; Instituto Nacional de Salud (INS): Singapore, 2017; 16p. | spa |
dcterms.references | Pallares, C.J.; Martínez, E. Implementación de un programa de uso regulado de antibióticos en 2 unidades de cuidado intensivo medico-quirúrgico en un hospital universitario de tercer nivel en Colombia. Infection 2012, 16, 192–198. | spa |
dcterms.references | Villalobos, A.P.; Barrero, L.I.; Rivera, S.M.; Ovalle, M.V.; Valera, D. Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011. Biomédica 2013, 34, 67. | spa |
dcterms.references | Diwan, V.; Tamhankar, A.J.; Khandal, R.K.; Sen, S.; Aggarwal, M.; Marothi, Y.; Iyer, R.V.; Sundblad-Tonderski, K.; StålsbyLundborg, C. Aesneatrcihb airtoiclteics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health 2010, 10, 414. | spa |
dcterms.references | Lacorte, S.; Gomez-Canela, C.; Calas-Blanchard, C. Pharmaceutical residues in senior residences wastewaters: High loads, emerging risks. Molecules 2021, 26, 5047. | spa |
dcterms.references | Lacorte, S.; Luis, S.; Gomez-Canela, C.; Sala-Comorera, T.; Courtier, A.; Roig, B.; Oliveira-Brett, A.M.; Joannis-Cassan, C.; Aragones, J.I.; Poggio, L.; et al. Pharmaceuticals released from senior residences: Occurrence and risk evaluation. Environ. Sci. Pollut. Res. 2018, 25, 6095–6106. | spa |
dcterms.references | Kummerer, K. Significance of antibiotics in the environment. J. Antimicrob. Chemother. 2003, 52, 5–7. | spa |
dcterms.references | Larsson, D.G. Antibiotics in the environment. Ups. J. Med. Sci. 2014, 119, 108–112. | spa |
dcterms.references | Li, S.; Shi, W.; Li, H.; Xu, N.; Zhang, R.; Chen, X.; Sun, W.; Wen, D.; He, S.; Pan, J.; et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, south China. Sci. Total Environ. 2018, 636, 1009–1019. | spa |
dcterms.references | Yang, S.; Carlson, K.H. Solid-phase extraction-high-performance liquid chromatography-ion trap mass spectrometry for analysis of trace concentrations of macrolide antibiotics in natural and waste water matrices. J. Chromatogr. A 2004, 1038, 141–155. | spa |
dcterms.references | Lien, L.T.; Hoa, N.Q.; Chuc, N.T.; Thoa, N.T.; Phuc, H.D.; Diwan, V.; Dat, N.T.; Tamhankar, A.J.; Lundborg, C.S. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-A one year study from Vietnam. Int. J. Environ. Res. Public Health 2016, 13, 588. | spa |
dcterms.references | Serna-Galvis, E.; Martínez-Mena, Y.L.; Porras, J.; Torres-Palma, R.A. Antibióticos de alto consumo en Colombia, excreción en orina y presencia en aguas residuales—Una revisión bibliográfica. Ing. Compet. 2021, 24, e30711267. | spa |
dcterms.references | Deak, D.; Outterson, K.; Powers, J.H.; Kesselheim, A.S. Progress in the Fight Against Multidrug-Resistant Bacteria? A Review of U.S. Food and Drug Administration-Approved Antibiotics, 2010–2015. Ann. Intern. Med. 2016, 165, 363–372. | spa |
dcterms.references | Andrei, S.; Droc, G.; Stefan, G. FDA approved antibacterial drugs: 2018–2019. Discoveries 2019, 7, e102. | spa |
dcterms.references | Malenfant, J.H.; Brewer, T.F. Rifampicin Mono-Resistant Tuberculosis-A Review of an Uncommon But Growing Challenge for Global Tuberculosis Control. Open Forum. Infect. Dis. 2021, 8, ofab018. | spa |
dcterms.references | Pan, M.; Chu, L.M. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total Environ. 2016, 545–546, 48–56. | spa |
dcterms.references | Cycon, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338. | spa |
dcterms.references | Ezzariai, A.; Hafidi, M.; Khadra, A.; Aemig, Q.; El Fels, L.; Barret, M.; Merlina, G.; Patureau, D.; Pinelli, E. Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. J. Hazard. Mater. 2018, 359, 465–481. | spa |
dcterms.references | Wu, S.; Hu, Y.H. A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics. Chem. Eng. J. 2021, 409, 127739. | spa |
dcterms.references | Homem, V.; Santos, L. Degradation and removal methods of antibiotics from aqueous matrices—A review. J. Env. Manag. 2011, 92, 2304–2347. | spa |
dcterms.references | Abdurahman, M.H.; Abdullah, A.Z.; Shoparwe, N.F. A comprehensive review on sonocatalytic, photocatalytic, and sonophotocatalytic processes for the degradation of antibiotics in water: Synergistic mechanism and degradation pathway. Chem. Eng. J. 2021, 413, 127412. | spa |
dcterms.references | Loftin, K.A.; Adams, C.D.; Meyer, M.T.; Surampalli, R. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. J. Environ. Qual. 2008, 37, 378–386. | spa |
dcterms.references | Calcio Gaudino, E.; Canova, E.; Liu, P.; Wu, Z.; Cravotto, G. Degradation of Antibiotics in Wastewater: New Advances in Cavitational Treatments. Molecules 2021, 26, 617. | spa |
dcterms.references | Zeghioud, H.; Kamagate, M.; Coulibaly, L.S.; Rtimi, S.; Assadi, A.A. Photocatalytic degradation of binary and ternary mixtures of antibiotics: Reactive species investigation in pilot scale. Chem. Eng. Res. Des. 2019, 144, 300–309. | spa |
dcterms.references | Dorival-Garcia, N.; Zafra-Gomez, A.; Navalon, A.; Gonzalez-Lopez, J.; Hontoria, E.; Vilchez, J.L. Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions. J. Environ. Manag. 2013, 120, 75–83. | spa |
dcterms.references | Lin, K.; Gan, J. Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere 2011, 83, 240–246. | spa |
dcterms.references | Ji, Y.; Ferronato, C.; Salvador, A.; Yang, X.; Chovelon, J.M. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics. Sci. Total Environ. 2014, 472, 800–808. | spa |
dcterms.references | Jiang, M.; Wang, L.; Ji, R. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment. Chemosphere 2010, 80, 1399–1405. | spa |
dcterms.references | Braschi, I.; Blasioli, S.; Fellet, C.; Lorenzini, R.; Garelli, A.; Pori, M.; Giacomini, D. Persistence and degradation of new beta-lactam antibiotics in the soil and water environment. Chemosphere 2013, 93, 152–159. | spa |
dcterms.references | Ahmad, F.; Zhu, D.; Sun, J. Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives. Environ. Sci. Eur. 2021, 33, 64. | spa |
dcterms.references | Ruan, Y.; Kumar Awasthi, M.; Cai, L.; Lu, H.; Xu, X.; Li, W. Simultaneous aerobic denitrification and antibiotics degradation by strain Marinobacter hydrocarbonoclasticus RAD-2. Bioresour. Technol. 2020, 313, 123609. | spa |
dcterms.references | Zhang, Y.; Xu, J.; Zhong, Z.; Guo, C.; Li, L.; He, Y.; Fan, W.; Chen, Y. Degradation of sulfonamides antibiotics in lake water and sediment. Environ. Sci. Pollut. Rese. Int. 2013, 20, 2372–2380. | spa |
dcterms.references | Nnenna, F.-P.; Lekiah, P.; Obemeata, O. Degradation of antibiotics by bacteria and fungi from the aquatic environment. J. Toxicol. Environ. Health Sci. 2011, 30, 275–285. | spa |
dcterms.references | Alexy, R.; Kumpel, T.; Kummerer, K. Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere 2004, 57, 505–512. | spa |
dcterms.references | Ho, Y.B.; Zakaria, M.P.; Latif, P.A.; Saari, N. Degradation of veterinary antibiotics and hormone during broiler manure composting. Bioresour. Technol. 2013, 131, 476–484. | spa |
dcterms.references | Ji, Y.; Shi, Y.; Dong, W.; Wen, X.; Jiang, M.; Lu, J. Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chem. Eng. J. 2016, 298, 225–233. | spa |
dcterms.references | Yin, R.; Guo, W.; Wang, H.; Du, J.; Zhou, X.; Wu, Q.; Zheng, H.; Chang, J.; Ren, N. Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: Direct oxidation and nonradical mechanisms. Chem. Eng. J. 2018, 334, 2539–2546. | spa |
dcterms.references | Lange, F.; Cornelissen, S.; Kubac, D.; Sein, M.M.; von Sonntag, J.; Hannich, C.B.; Golloch, A.; Heipieper, H.J.; Moder, M.; von Sonntag, C. Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin. Chemosphere 2006, 65, 17–23. | spa |
dcterms.references | Pelalak, R.; Alizadeh, R.; Ghareshabani, E.; Heidari, Z. Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study. Sci. Total Environ. 2020, 734, 139446. | spa |
dcterms.references | Wu, X.; Zhao, W.; Huang, Y.; Zhang, G. A mechanistic study of amorphous CoSx cages as advanced oxidation catalysts for excellent peroxymonosulfate activation towards antibiotics degradation. Chem. Eng. J. 2020, 381, 122768. | spa |
dcterms.references | Guo, W.; Su, S.; Yi, C.; Ma, Z. Degradation of antibiotics amoxicillin by Co3O4-catalyzed peroxymonosulfate system. Environ. Prog. Sustain. Energ. 2013, 32, 193–197. | spa |
dcterms.references | Calvete, M.J.F.; Piccirillo, G.; Vinagreiro, C.S.; Pereira, M.M. Hybrid materials for heterogeneous photocatalytic degradation of antibiotics. Coordin. Chem. Rev. 2019, 395, 63–85. | spa |
dcterms.references | Rokesh, K.; Sakar, M.; Do, T.O. Emerging Hybrid Nanocomposite Photocatalysts for the Degradation of Antibiotics: Insights into Their Designs and Mechanisms. Nanomaterials 2021, 11, 572. | spa |
dcterms.references | Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. | spa |
dcterms.references | Chen, D.; Li, B.; Pu, Q.; Chen, X.; Wen, G.; Li, Z. Preparation of Ag-AgVO3/g-C3N4 composite photo-catalyst and degradation characteristics of antibiotics. J. Hazard. Mater. 2019, 373, 303–312. | spa |
dcterms.references | Wang, J.; Zhuan, R.; Chu, L. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. Sci. Total Environ. 2019, 646, 1385–1397. | spa |
dcterms.references | He, X.; Mezyk, S.P.; Michael, I.; Fatta-Kassinos, D.; Dionysiou, D.D. Degradation kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254nm irradiation. J. Hazard. Mater. 2014, 279, 375–383. | spa |
dcterms.references | Jeong, J.; Song, W.; Cooper, W.J.; Jung, J.; Greaves, J. Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere 2010, 78, 533–540. | spa |
dcterms.references | Saidulu, D.; Gupta, B.; Gupta, A.K.; Ghosal, P.S. A review on occurrences, eco-toxic effects, and remediation of emerging contaminants from wastewater: Special emphasis on biological treatment based hybrid systems. J. Environ. Chem. Eng. 2021, 9, 105282. | spa |
dcterms.references | Li, D.; Shi, W. Recent developments in visible-light photocatalytic degradation of antibiotics. Chin. J. Catal. 2016, 37, 792–799. | spa |
dcterms.references | Elmolla, E.S.; Chaudhuri, M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 2010, 252, 46–52. | spa |
dcterms.references | Elmolla, E.S.; Chaudhuri, M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J. Hazard. Mater. 2010, 173, 445–449. | spa |
dcterms.references | Zheng, X.; Xu, S.; Wang, Y.; Sun, X.; Gao, Y.; Gao, B. Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: Strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. J. Colloid. Interface Sci. 2018, 527, 202–213. | spa |
dcterms.references | Abellán, M.N.; Giménez, J.; Esplugas, S. Photocatalytic degradation of antibiotics: The case of sulfamethoxazole and trimethoprim. Catal. Today 2009, 144, 131–136. | spa |
dcterms.references | Ding, J.; Dai, Z.; Qin, F.; Zhao, H.; Zhao, S.; Chen, R. Z-scheme BiO1-xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics. Appl. Catal. B Environ. 2017, 205, 281–291. | spa |
dcterms.references | Wang, K.; Li, Y.; Zhang, G.; Li, J.; Wu, X. 0D Bi nanodots/2D Bi3NbO7 nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: Enhanced molecular oxygen activation and mechanism insight. Appl. Catal. B Environ. 2019, 240, 39–49. | spa |
dcterms.references | Yan, W.; Yan, L.; Jing, C. Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms. Appl. Catal. B Environ. 2019, 244, 475–485. | spa |
dcterms.references | Wang, A.; Zheng, Z.; Wang, H.; Chen, Y.; Luo, C.; Liang, D.; Hu, B.; Qiu, R.; Yan, K. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation. Appl. Catal. B Environ. 2020, 277, 119171. | spa |
dcterms.references | Shi, W.; Li, M.; Huang, X.; Ren, H.; Guo, F.; Tang, Y.; Lu, C. Construction of CuBi2O4/Bi2MoO6 p-n heterojunction with nanosheets-on-microrods structure for improved photocatalytic activity towards broad-spectrum antibiotics degradation. Chem. Eng. J. 2020, 394, 125009. | spa |
dcterms.references | Li, S.; Wang, C.; Liu, Y.; Xue, B.; Jiang, W.; Liu, Y.; Mo, L.; Chen, X. Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism. Chem. Eng. J. 2021, 415, 128991. | spa |
dcterms.references | Che, H.; Che, G.; Jiang, E.; Liu, C.; Dong, H.; Li, C. A novel Z-Scheme CdS/Bi3O4Cl heterostructure for photocatalytic degradation of antibiotics: Mineralization activity, degradation pathways and mechanism insight. J. Taiwan Inst. Chem. Eng. 2018, 91, 224–234. | spa |
dcterms.references | Li, H.; Li, T.; He, S.; Zhou, J.; Wang, T.; Zhu, L. Efficient degradation of antibiotics by non-thermal discharge plasma: Highlight the impacts of molecular structures and degradation pathways. Chem. Eng. J. 2020, 395, 125091. | spa |
dcterms.references | Magureanu, M.; Piroi, D.; Mandache, N.B.; David, V.; Medvedovici, A.; Bradu, C.; Parvulescu, V.I. Degradation of antibiotics in water by non-thermal plasma treatment. Water Res. 2011, 45, 3407–3416. | spa |
dcterms.references | Kim, K.-S.; Yang, C.-S.; Mok, Y.S. Degradation of veterinary antibiotics by dielectric barrier discharge plasma. Chem. Eng. J. 2013, 219, 19–27. | spa |
dcterms.references | Sarangapani, C.; Ziuzina, D.; Behan, P.; Boehm, D.; Gilmore, B.F.; Cullen, P.J.; Bourke, P. Degradation kinetics of cold plasmatreated antibiotics and their antimicrobial activity. Sci. Rep. 2019, 9, 3955. | spa |
dcterms.references | Kong, D.; Liang, B.; Yun, H.; Cheng, H.; Ma, J.; Cui, M.; Wang, A.; Ren, N. Cathodic degradation of antibiotics: Characterization and pathway analysis. Water Res. 2015, 72, 281–292. | spa |
dcterms.references | Lin, H.; Zhang, J.; Chen, H.; Wang, J.; Sun, W.; Zhang, X.; Yang, Y.; Wang, Q.; Ma, J. Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures. Sci. Total Environ. 2017, 607–608, 725–732. | spa |
dcterms.references | Chakma, S.; Dikshit, P.K.; Galodiya, M.N.; Giri, A.S.; Moholkar, V.S. The role of ultrasound in enzymatic degradation mechanism. J. Taiwan Inst. Chem. Eng. 2020, 107, 54–71. | spa |
dcterms.references | Adewuyi, Y.G. Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environ. Sci. Technol. 2005, 39, 8557–8570. | spa |
dcterms.references | De Bel, E.; Dewulf, J.; Witte, B.D.; Van Langenhove, H.; Janssen, C. Influence of pH on the sonolysis of ciprofloxacin: Biodegradability, ecotoxicity and antibiotic activity of its degradation products. Chemosphere 2009, 77, 291–295. | spa |
dcterms.references | Liu, P.; Wu, Z.; Abramova, A.V.; Cravotto, G. Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. Ultrason. Sonochem. 2021, 74, 105566. | spa |
dcterms.references | Li, L.; Wei, D.; Wei, G.; Du, Y. Oxidation of cefazolin by potassium permanganate: Transformation products and plausible pathways. Chemosphere 2016, 149, 279–285. | spa |
dcterms.references | Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. Appl. Catal. B Environ. 2004, 49, 1–14. | spa |
dcterms.references | Fan, Y.; Zhou, Z.; Feng, Y.; Zhou, Y.; Wen, L.; Shih, K. Degradation mechanisms of ofloxacin and cefazolin using peroxymonosulfate activated by reduced graphene oxide-CoFe2O4 composites. Chem. Eng. J. 2020, 383, 123056. | spa |
dcterms.references | Ghasemi, M.; Khataee, A.; Gholami, P.; Soltani, R.D.C.; Hassani, A.; Orooji, Y. In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J. Environ. Manag. 2020, 267, 110629. | spa |
dcterms.references | Gurkan, Y.Y.; Turkten, N.; Hatipoglu, A.; Cinar, Z. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: Prediction of the reaction paths via conceptual DFT. Chem. Eng. J. 2012, 184, 113–124. | spa |
dcterms.references | Chen, Y.; Tian, H.; Zhu, W.; Zhang, X.; Li, R.; Chen, C.; Huang, Y. l-Cysteine directing synthesis of BiOBr nanosheets for efficient cefazolin photodegradation: The pivotal role of thiol. J. Hazard. Mater. 2021, 414, 125544. | spa |
dcterms.references | Gholami, P.; Dinpazhoh, L.; Khataee, A.; Hassani, A.; Bhatnagar, A. Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium. J. Hazard. Mater. 2020, 381, 120742. | spa |
dcterms.references | Liu, J.; Li, Z.; Wang, M.; Jin, C.; Kang, J.; Tang, Y.; Li, S. Eu2O3/Co3O4 nanosheets for levofloxacin removal via peroxymonosulfate activation: Performance, mechanism and degradation pathway. Separat. Pur. Technol. 2021, 274, 118666. | spa |
dcterms.references | He, Z.; Zheng, W.; Li, M.; Liu, W.; Zhang, Y.; Wang, Y. Fe2P/biocarbon composite derived from a phosphorus-containing biomass for levofloxacin removal through peroxymonosulfate activation. Chem. Eng. J. 2022, 427, 130928. | spa |
dcterms.references | Xu, K.; Ben, W.; Ling, W.; Zhang, Y.; Qu, J.; Qiang, Z. Impact of humic acid on the degradation of levofloxacin by aqueous permanganate: Kinetics and mechanism. Water Res. 2017, 123, 67–74. | spa |
dcterms.references | Zhou, Y.; Gao, Y.; Jiang, J.; Shen, Y.M.; Pang, S.Y.; Song, Y.; Guo, Q. A comparison study of levofloxacin degradation by peroxymonosulfate and permanganate: Kinetics, products and effect of quinone group. J. Hazard. Mater. 2021, 403, 123834. | spa |
dcterms.references | Liang, J.; Hou, Y.; Zhu, H.; Xiong, J.; Huang, W.; Yu, Z.; Wang, S. Levofloxacin degradation performance and mechanism in the novel electro-Fenton system constructed with vanadium oxide electrodes under neutral pH. Chem. Eng. J. 2022, 433, 133574. | spa |
dcterms.references | Zhang, Y.; Hua, S.; Sun, X.; Liu, Z.; Dang, Y.; Zhang, L.; Zhou, Y. A novel electrochemical cathode based on sea urchin-like NiO/Co3O4 composite inducing efficient Fenton-like process for levofloxacin degradation. Appl. Catal. A 2021, 628, 118403. | spa |
dcterms.references | Wang, A.; Chen, Z.; Zheng, Z.; Xu, H.; Wang, H.; Hu, K.; Yan, K. Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@MnOx microspheres. Chem. Eng. J. 2020, 379, 122340. | spa |
dcterms.references | Gong, Y.; Li, J.; Zhang, Y.; Zhang, M.; Tian, X.; Wang, A. Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode. J. Hazard. Mater. 2016, 304, 320–328. | spa |
dcterms.references | Hu, Z.; Ge, M.; Guo, C. Efficient removal of levofloxacin from different water matrices via simultaneous adsorption and photocatalysis using a magnetic Ag3PO4/rGO/CoFe2O4 catalyst. Chemosphere 2021, 268, 128834. | spa |
dcterms.references | Rong, F.; Xue, Y.; Tang, W.; Lu, Q.; Wei, M.; Guo, E.; Pang, Y. Visible-light-active 1D Ag-CoWO4/CdWO4 plasmonic photocatalysts boosting levofloxacin conversion. J. Taiwan Inst. Chem. Eng. 2022, 133, 104267. | spa |
dcterms.references | Wei, H.; Hu, D.; Su, J.; Li, K. Intensification of levofloxacin sono-degradation in a US/H2O2 system with Fe3O4 magnetic nanoparticles. Chin. J. Chem. Eng. 2015, 23, 296–302. | spa |
dcterms.references | Conde-Cid, M.; Fernandez-Calvino, D.; Novoa-Munoz, J.C.; Arias-Estevez, M.; Diaz-Ravina, M.; Fernandez-Sanjurjo, M.J.; Nunez-Delgado, A.; Alvarez-Rodriguez, E. Biotic and abiotic dissipation of tetracyclines using simulated sunlight and in the dark. Sci. Total Environ. 2018, 635, 1520–1529. | spa |
dcterms.references | Norzaee, S.; Taghavi, M.; Djahed, B.; Kord Mostafapour, F. Degradation of Penicillin G by heat activated persulfate in aqueous solution. J. Environ. Manag. 2018, 215, 316–323. | spa |
dcterms.references | Zhu, L.; Santiago-Schubel, B.; Xiao, H.; Hollert, H.; Kueppers, S. Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change. Water Res. 2016, 102, 52–62. | spa |
dcterms.references | Jiang, Y.; Ran, J.; Mao, K.; Yang, X.; Zhong, L.; Yang, C.; Feng, X.; Zhang, H. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. Ecotoxicol. Environ. Saf. 2022, 236, 113464. | spa |
dcterms.references | Yang, Y.; Kou, L.; Fan, Q.; Jiang, K.; Wang, J. Simultaneous recovery of phosphate and degradation of antibiotics by waste sludge-derived biochar. Chemosphere 2022, 291, 132832. | spa |
dcterms.references | Al-Jubouri, S.M.; Al-Jendeel, H.A.; Rashid, S.A.; Al-Batty, S. Antibiotics adsorption from contaminated water by composites of ZSM-5 zeolite nanocrystals coated carbon. J. Water. Proc. Eng. 2022, 47, 102745. | spa |
dcterms.references | Bekkali, C.E.; Bouyarmane, H.; Karbane, M.E.; Masse, S.; Saoiabi, A.; Coradin, T.; Laghzizil, A. Zinc oxide-hydroxyapatite nanocomposite photocatalysts for the degradation of ciprofloxacin and ofloxacin antibiotics. Colloids. Surf. A Physicochem. Eng. Aspects. 2018, 539, 364–370. | spa |
dcterms.references | Felis, E.; Buta-Hubeny, M.; Zielinski, W.; Hubeny, J.; Harnisz, M.; Bajkacz, S.; Korzeniewska, E. Solar-light driven photodegradation of antimicrobials, their transformation by-products and antibiotic resistance determinants in treated wastewater. Sci. Total Environ. 2022, 836, 155447. | spa |
dcterms.references | Zhang, W.; Liu, Y.; Li, C. Photocatalytic degradation of ofloxacin on Gd2Ti2O7 supported on quartz spheres. J. Phys. Chem. Solids. 2018, 118, 144–149. | spa |
dcterms.references | Pal, S.; Ahamed, Z.; Pal, P. Removal of antibiotics and pharmaceutically active compounds from water Environment: Experiments towards industrial scale up. Separat. Purif. Technol. 2022, 295, 121249. | spa |
dcterms.references | Reis, A.C.; Kolvenbach, B.A.; Nunes, O.C.; Corvini, P.F.X. Biodegradation of antibiotics: The new resistance determinants—Part I. N Biotechnol. 2020, 54, 34–51. | spa |
dcterms.references | Chaturvedi, P.; Giri, B.S.; Shukla, P.; Gupta, P. Recent advancement in remediation of synthetic organic antibiotics from environmental matrices: Challenges and perspective. Bioresour. Technol. 2021, 319, 124161. | spa |
dcterms.references | Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. Environ. Sci. Technol. 2019, 53, 7234–7264. | spa |
dcterms.references | Langbehn, R.K.; Michels, C.; Soares, H.M. Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies. Environ. Pollut. 2021, 275, 116603. | spa |
dcterms.references | Zhou, W.; Zhang, W.; Cai, Y. Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J. 2021, 403, 126272. | spa |
dcterms.references | Bilal, M.; Ashraf, S.S.; Barcelo, D.; Iqbal, H.M.N. Biocatalytic degradation/redefining "removal" fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Sci. Total Environ. 2019, 691, 1190–1211. | spa |
dcterms.references | Park, H.; Choung, Y.-K. Degradation of Antibiotics (Tetracycline, Sulfathiazole, Ampicillin) Using Enzymes of Glutathion S-Transferase. Human. Ecol. Risk Assess. Int. J. 2007, 13, 1147–1155. | spa |
dcterms.references | Wen, X.; Jia, Y.; Li, J. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. J. Hazard. Mater. 2010, 177, 924–928. | spa |
dcterms.references | Wen, X.; Zeng, Z.; Du, C.; Huang, D.; Zeng, G.; Xiao, R.; Lai, C.; Xu, P.; Zhang, C.; Wan, J.; et al. Immobilized laccase on bentonite-derived mesoporous materials for removal of tetracycline. Chemosphere 2019, 222, 865–871. | spa |
dcterms.references | Tian, Q.; Dou, X.; Huang, L.; Wang, L.; Meng, D.; Zhai, L.; Shen, Y.; You, C.; Guan, Z.; Liao, X. Characterization of a robust cold-adapted and thermostable laccase from Pycnoporus sp. SYBC-L10 with a strong ability for the degradation of tetracycline and oxytetracycline by laccase-mediated oxidation. J. Hazard. Mater. 2020, 382, 121084. | spa |
dcterms.references | Copete-Pertuz, L.S.; Plácido, J.; Serna-Galvis, E.A.; Torres-Palma, R.A.; Mora, A. Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal. Sci. Total Environ. 2018, 630, 1195–1204. | spa |
dcterms.references | Sun, X.; Leng, Y.; Wan, D.; Chang, F.; Huang, Y.; Li, Z.; Xiong, W.; Wang, J. Transformation of Tetracycline by Manganese Peroxidase from Phanerochaete chrysosporium. Molecules 2021, 26. | spa |
dcterms.references | Weng, S.S.; Ku, K.L.; Lai, H.T. The implication of mediators for enhancement of laccase oxidation of sulfonamide antibiotics. Bioresour. Technol. 2012, 113, 259–264. | spa |
dcterms.references | Hakulinen, N.; Rouvinen, J. Three-dimensional structures of laccases. CMLS 2015, 72, 857–868. | spa |
dcterms.references | Dwivedi, U.N.; Singh, P.; Pandey, V.P.; Kumar, A. Structure–function relationship among bacterial, fungal and plant laccases. J. Mol. Catal. B Enz. 2011, 68, 117–128. | spa |
dcterms.references | Rivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Rodríguez-Vázquez, R.; Delgado-Boada, J.M. Fungal laccases. Fung. Biol. Rev. 2013, 27, 67–82. | spa |
dcterms.references | Shraddha; Shekher, R.; Sehgal, S.; Kamthania, M.; Kumar, A. Laccase:microbial sources, production, purification, and potential biotechnological applications. Enz. Res. 2011, 2011, 217861. | spa |
dcterms.references | Christopher, L.P.; Yao, B.; Ji, Y. Lignin biodegradation with laccase-mediator systems. Front. Ener. Res. 2014, 2, 12. | spa |
dcterms.references | Falade, A.O.; Nwodo, U.U.; Iweriebor, B.C.; Green, E.; Mabinya, L.V.; Okoh, A.I. Lignin peroxidase functionalities and prospective applications. Microbiol. Open 2017, 6, e00394. | spa |
dcterms.references | Wesenberg, D.; Kyriakides, I.; Agathos, S.N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 2003, 22, 161–187. | spa |
dcterms.references | Kong, W.; Fu, X.; Wang, L.; Alhujaily, A.; Zhang, J.; Ma, F.; Zhang, X.; Yu, H. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnol. Biofuels. 2017, 10, 218. | spa |
dcterms.references | Rodríguez Couto, S.; Toca Herrera, J.L. Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 2006, 24, 500–513. | spa |
dcterms.references | Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971. | spa |
dcterms.references | Majeau, J.-A.; Brar, S.K.; Tyagi, R.D. Laccases for removal of recalcitrant and emerging pollutants. Biores. Technol. 2010, 101, 2331–2350. | spa |
dcterms.references | Ardila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E. A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules 2021, 26, 3813. | spa |
dcterms.references | Yang, J.; Li, W.; Ng, T.B.; Deng, X.; Lin, J.; Ye, X. Laccases: Production, expression regulation, and applications in pharmaceutical biodegradation. Front. Microbiol. 2017, 8, 832. | spa |
dcterms.references | Navada, K.K.; Kulal, A. Enzymatic degradation of chloramphenicol by laccase from Trametes hirsuta and comparison among mediators. Int. Biodet. Biodegrad. 2019, 138, 63–69. | spa |
dcterms.references | Najafabadipour, N.; Mojtabavi, S.; Jafari-Nodoushan, H.; Samadi, N.; Faramarzi, M.A. High efficiency of osmotically stable laccase for biotransformation and micro-detoxification of levofloxacin in the urea-containing solution: Catalytic performance and mechanism. Colloids. Surf. B Biointerf. 2021, 207, 112022. | spa |
dcterms.references | Kelbert, M.; Pereira, C.S.; Daronch, N.A.; Cesca, K.; Michels, C.; de Oliveira, D.; Soares, H.M. Laccase as an efficacious approach to remove anticancer drugs: A study of doxorubicin degradation, kinetic parameters, and toxicity assessment. J. Hazard. Mater. 2021, 409, 124520. | spa |
dcterms.references | Rivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Poveda-Cuevas, S.A.; Reyes-Guzmán, E.A.; Poutou-Piñales, R.A.; Reyes-Montaño, E.A.; Pedroza-Rodríguez, A.M.; Rodríguez-Vázquez, R.; Cardozo-Bernal, Á.M. Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLoS ONE 2015, 10, e0116524. | spa |
dcterms.references | Sáenz-Suárez, H.; Chávez-Zobbel, A.; Lareo, L.R.; Oribio-Quinto, C.; Martínez-Mendoza, J. Predicción computacional de estructura terciaria de las proteínas humanas Hsp27, aB-cristalina y HspB8. Univ. Sci. 2011, 16, 15–28. | spa |
dcterms.references | Zárate-Bonilla, L.J.; del Portillo, P.; Sáenz-Suárez, H.; Janneth, G.-S.; Barreto-Sampaio, G.E.; Poutou-Piñales, R.A.; Felipe Rey, A.; Rey, J.G. Computational modeling and preliminary iroN, fepA, cirA gene expression in Salmonella Enteritidis under iron deficiency induced conditions. Poult. Sci. 2014, 93, 221–230. | spa |
dcterms.references | Sáenz-Suárez, H.; Rivera-Hoyos, C.; Morales-Álvarez, E.; Poutou-Piñales, R.; Sáenz-Moreno, J.; Pedroza-Rodríguez, A. Modelación computacional preliminar de la estructura 3D de dos lacasas fúngicas. Salud. Arte. Cuidado. 2014, 7, 5–16. | spa |
dcterms.references | Sáenz-Suárez, H.; Poutou-Piñales, R.A.; González-Santos, J.; Barreto, G.E.; Prieto-Navarrera, L.P.; Sáenz-Moreno, J.A.; Landázuri, P.; Barrera-Avellaneda, L.A. Prediction of glycation sites: New insights from protein structural analysis. Turk. J. Biol. 2016, 40, 12–25. | spa |
dcterms.references | Niño-Gómez, D.C.; Rivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Reyes-Montaño, E.A.; Vargas-Alejo, N.E.; Ramírez-Casallas, I.N.; Erkan Turkmen, K.; Sáenz-Suárez, H.; Sáenz-Moreno, J.A.; Poutou-Piñales, R.A.; et al. “In silico” characterization of 3-phytase A and 3-phytase B from Aspergillus niger. Enz. Res. 2017, 2017, 9746191. | spa |
dcterms.references | Sáenz, H.; Lareo, L.; Poutou, R.A.; Sosa, C.; Barrera, L.A. Predicción computacional de la estructura terciaria de la iduronato 2-sulfato sulfatasa humana. Biomédica 2007, 27, 7–20. | spa |
dcterms.references | Ardila-Leal, L.D.; Monterey-Gutiérrez, P.A.; Poutou-Piñales, R.A.; Quevedo-Hidalgo, B.E.; Galindo, J.F.; Pedroza-Rodríguez, A.M. Recombinant laccase rPOXA 1B real-time and accelerated stability studies supported by molecular dynamics. BMC Biotechnol. 2021, 21, 37. | spa |
dcterms.references | Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev. 2017, 9, 91–102. | spa |
dcterms.references | Ardila-Leal, L.D. Producción a escala piloto (10L) y caracterización de un concentrado enzimático de rPOXA 1B para la remoción de colorantes. In Microbiology; Pontificia Universidad Javeriana: Bogotá D.C., Colombia, 2021; p. 361. | spa |
dcterms.references | Sarkar, S.; Banerjee, A.; Chakraborty, N.; Soren, K.; Chakraborty, P.; Bandopadhyay, R. Structural-functional analyses of textile dye degrading azoreductase, laccase and peroxidase: A comparative in silico study. Elect. J. Biotechnol. 2020, 43, 48–54. | spa |
dcterms.references | Singh, A.; Kumari, S.; Pal, T.K. In silico analysis for laccase-mediated bioremediation of the emerging pharmaceutical pollutants. Int. J. Bioautom. 2015, 19, 423–432. | spa |
dcterms.references | Yue, S.-Y. Distance-constrained molecular docking by simulated annealing. Prot. Eng. 1990, 4, 177–184. | spa |
dcterms.references | Reva, B.A.; Finkelstein, A.V.; Skolnick, J. What is the probability of a chance prediction of a protein structure with an rmsd of 6 å? Fold Des. 1998, 3, 141–147. | spa |
dcterms.references | Cárdenas-Moreno, Y.; Espinosa, L.A.; Vieyto, J.C.; González-Durruthy, M.; del Monte-Martinez, A.; Guerra-Rivera, G.; Sánchez López, M.I. Theoretical study on binding interactions of laccase-enzyme from Ganoderma weberianum with multiples ligand substrates with environmental impact. Ann. Prot. Bioinf. 2019, 3, 001–009. | spa |
dcterms.references | Sutar, R.S.; Rathod, V.K. Ultrasound assisted Laccase catalyzed degradation of Ciprofloxacin hydrochloride. J. Ind. Eng. Chem. 2015, 31, 276–282. | spa |
dc.contributor.corporatename | Molecules | spa |
dc.identifier.doi | https://doi.org/10.3390/molecules27144436 | |
dc.publisher.place | Suiza | spa |
dc.relation.citationedition | Vol. 27 No° 14 [2022] | spa |
dc.relation.citationendpage | 44 | spa |
dc.relation.citationissue | 14[2022] | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 27 | spa |
dc.relation.cites | Mora-Gamboa, M.P.C.; Rincón-Gamboa, S.M.; Ardila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E. Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules 2022, 27, 4436. https:// doi.org/10.3390/molecules27144436 | |
dc.relation.ispartofjournal | Molecules | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | antibiotics | eng |
dc.subject.proposal | laccases | eng |
dc.subject.proposal | wastewaters | eng |
dc.subject.proposal | antimicrobial resistance | eng |
dc.subject.proposal | treatment | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_dcae04bc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |