Mostrar el registro sencillo del ítem
Tribocorrosion Behavior of Amorphous Carbon-Silicon Coated Titanium in Biological Medium
dc.contributor.author | Bautista-Ruiz, Jorge | |
dc.contributor.author | Aperador Chaparro, William Arnulfo | |
dc.contributor.author | Caicedo, J.C. | |
dc.date.accessioned | 2021-11-04T16:45:56Z | |
dc.date.available | 2021-11-04T16:45:56Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/651 | |
dc.description.abstract | Studies of materials in biomedical applications have focused on the generation of new biomaterials and the development of surface modifications, mainly of metals. Amorphous silicon containing diamond like carbon DLC-Si coating deposited on titanium substrate with the purpose of studying its biofunctionality. The behavior against the phenomenon of tribocorrosion of coatings DLC-Si deposited on titanium was evaluated, through the plasma-assisted chemical vapor deposition technique. The nanoindentation technique was used to determine the coating mechanical properties. The DLC-Si coatings were structurally analyzed through X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques, the characteristic binding energy for the signal C1s was obtained from XPS. Via XRD results the amorphous structure of DLC-Si coating was determined. The triboelectrochemical results indicate that the coating shows an adequate wear and to corrosion protection when exposed to the synergic mechanism, thus demonstrating the protective coating effect | eng |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Tribology in Industry | spa |
dc.relation.ispartof | Tribology in Industry | |
dc.rights | Copyright of Tribology in Industry is the property of Tribology in Industry Journal and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use | eng |
dc.source | http://tribology.rs/journals/2018/2018-2/2018-2-15.html | spa |
dc.title | Tribocorrosion Behavior of Amorphous Carbon-Silicon Coated Titanium in Biological Medium | eng |
dc.type | Artículo de revista | spa |
dcterms.references | T. Laurila, S. Sainio, M.A. Caro, Hybrid carbon based nanomaterials for electrochemical detection of biomolecules, Progress in Materials Science, vol. 88, pp. 499-594, 2017, doi.org/10.1016/j.pmatsci.2017.04.012 | spa |
dcterms.references | S. Muhl, A. Pérez, The use of hollow cathodes in deposition processes: A critical review, Thin Solid Films, vol. 579, pp. 174-198, 2015, doi.org/10.1016/j.tsf.2015.02.066 | spa |
dcterms.references | A. Doi, H. Kawai, T. Yoshioka, S. Yamanaka, Vapor-deposited ceramic coating: Status and prospects, Ceramics International, vol. 18, iss. 4, pp. 223-229, 1992, doi.org/10.1016/0272- 8842(92)90099-Y | spa |
dcterms.references | R. Franz, C. Mitterer, Vanadium containing selfadaptive low-friction hard coatings for hightemperature applications: A review, Surface and Coatings Technology, vol. 228, pp. 1-13, 2013, doi.org/10.1016/j.surfcoat.2013.04.034 | spa |
dcterms.references | R. Kr. Ghadai, S. Das, D. Kumar, S. C. Mondal, B.P. Swain, Correlation between structural and mechanical properties of silicon doped DLC thin films, Diamond and Related Materials, vol. 82, pp. 25-32, , 2018, doi.org/10.1016/j.diamond.2017.12.012 | spa |
dcterms.references | Md Abdullah Al Mamun, H. Furuta, A. Hatta, Pulsed DC plasma CVD system for the deposition of DLC films, Materials Today Communications, vol.14, pp.40-46, 2018, doi.org/10.1016/j.mtcomm.2017.12.008 | spa |
dcterms.references | R.A. Antunes, M.C. Lopes de Oliveira, Corrosion fatigue of biomedical metallic alloys: Mechanisms and mitigation, Acta Biomaterialia, vol. 8, iss. 3, pp. 937- 962, 2012, doi.org/10.1016/j.actbio.2011.09.012 | spa |
dcterms.references | J.J. Ramsden, D.M. Allen, D.J. Stephenson, J.R. Alcock, G.N. Peggs, G. Fuller, G. Goch, The Design and Manufacture of Biomedical Surfaces, CIRP Annals, vol. 56, iss. 2, pp. 687-711, 2007, doi.org/10.1016/j.cirp.2007.10.001 | spa |
dcterms.references | S. Cui, S. Lu, W. Xu, B. An, B. Wu, Fabrication of robust gold superhydrophobic surface on iron substrate with properties of corrosion resistance, self-cleaning and mechanical durability, Journal of Alloys and Compounds, vol. 728, pp. 271-281, 2017, doi.org/10.1016/j.jallcom.2017.09.007 | spa |
dcterms.references | J. Zuo, Y. Xie, J. Zhang, Q. Wei, B. Zhou, J. Luo, Y. Wang, Z.M. Yu, Z.G. Tang, TiN coated stainless steel bracket: Tribological, corrosion resistance, biocompatibility and mechanical performance, Surface and Coatings Technology, vol. 277, pp. 227-233, 2015, doi.org/10.1016/j.surfcoat.2015.07.009 | spa |
dcterms.references | J. Verma, R. V. Taiwade, Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review, Journal of Manufacturing Processes, vol. 25, pp. 134-152, 2017, doi.org/10.1016/j.jmapro.2016.11.003 | spa |
dcterms.references | M.F.F.A. Hamidi, W.S.W. Harun, M. Samykano, S.A.C. Ghani, Z. Ghazalli, F. Ahmad, A.B. Sulong, A review of biocompatible metal injection moulding process parameters for biomedical applications, Materials Science and Engineering: C, vol. 78, pp. 1263-1276, 2017, doi.org/10.1016/j.msec.2017.05.016 | spa |
dcterms.references | M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomaterialia, vol. 8, iss. 11, pp. 3888-3903, 2012, doi.org/10.1016/j.actbio.2012.06.037 | spa |
dcterms.references | M.T. Mohammed, Development of a new metastable beta titanium alloy for biomedical applications, Karbala International Journal of Modern Science, vol. 3, iss. 4, pp. 224-230, 2017, doi.org/10.1016/j.kijoms.2017.08.005 | spa |
dcterms.references | Y. Li, K. S. Munir, J. Lin, C. Wen, Titanium-niobium pentoxide composites for biomedical applications, Bioactive Materials, vol. 1, iss. 2, pp. 127-131, 2016, doi.org/10.1016/j.bioactmat.2016.10.001 | spa |
dcterms.references | E.D. Gonzalez, Conrado R.M. Afonso, Pedro A.P. Nascente, Influence of Nb content on the structure, morphology, nanostructure, and properties of titanium-niobium magnetron sputter deposited coatings for biomedical applications, Surface and Coatings Technology, vol. 326, part B, pp. 424-428, 2017, doi.org/10.1016/j.surfcoat.2017.03.015 | spa |
dcterms.references | K.H. Woll, M.D. Leibowitz, B. Neumcke, B. Hille, A high-conductance anion channel in adult amphibian skeletal muscle, Pflugers Archiv, vol. 410, no. 6, pp. 632–640, 1987. | spa |
dcterms.references | M. Constantinou, M. Pervolaraki, L. Koutsokeras, C. Prouskas, P. Patsalas, P. Kelires, J. Giapintzakis, G. Constantinides, Enhancing the nanoscratch resistance of pulsed laser deposited DLC films through molybdenum-doping, Surface and Coatings Technology, vol. 330, pp. 185-195, 2017, doi.org/10.1016/j.surfcoat.2017.09.048 | spa |
dcterms.references | V. Gopal, M. Chandran, M.S. Ramachandra Rao, S. Mischler, S. Cao, G. Manivasagam, Tribocorrosion and electrochemical behaviour of nanocrystalline diamond coated Ti based alloys for orthopaedic application, Tribology International, vol.106, pp.88- 100, 2017, doi.org/10.1016/j.triboint.2016.10.040 | spa |
dcterms.references | R. Bayón, A. Igartua, J.J. González, U. Ruiz de Gopegui, Influence of the carbon content on the corrosion and tribocorrosion performance of TiDLC coatings for biomedical alloys, Tribology International, vol. 88, pp. 115-125, 2015, doi.org/10.1016/j.triboint.2015.03.007 | spa |
dcterms.references | Z. Doni, A.C. Alves, F. Toptan, J.R. Gomes, A. Ramalho, M. Buciumeanu, L. Palaghian, F.S. Silva, Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys, Materials & Design, vol. 52, pp. 47-57, 2013, doi.org/10.1016/j.matdes.2013.05.032 | spa |
dcterms.references | K. Sadiq, M.M. Stack, R.A. Black, Wear mapping of CoCrMo alloy in simulated bio-tribocorrosion conditions of a hip prosthesis bearing in calf serum solution, Materials Science and Engineering: C, vol. 49, pp. 452-462, 2015, doi.org/10.1016/j.msec.2015.01.004 | spa |
dcterms.references | V. Sáenz de Viteri, G. Barandika, R. Bayón, X. Fernández, I. Ciarsolo, A. Igartua, R. Pérez - Tanoira, J. Moreno, C. Pérez, J. Peremarch, Development of Ti–C–N coatings with improved tribological behavior and antibacterial properties, Journal of the Mechanical Behavior of Biomedical Materials, vol. 55, pp. 75-86, 2016, doi.org/10.1016/j.jmbbm.2015.10.020 | spa |
dcterms.references | Y. Yan, A. Neville, D. Dowson, S. Williams, Tribocorrosion in implants—assessing high carbon and low carbon Co–Cr–Mo alloys by in situ electrochemical measurements, Tribology International, vol. 39, iss. 12, pp. 1509-1517, 2006, doi.org/10.1016/j.triboint.2006.01.016 | spa |
dcterms.references | X. Guan, Y. Wang, J. Wang, Q. Xue, Adaptive capacities of chromium doped graphite-like carbon films in aggressive solutions with variable pH, Tribology International, vol. 96, pp. 307-316, 2016, doi.org/10.1016/j.triboint.2015.12.048 | spa |
dcterms.references | ] S. Maniscalco, M. Caligari Conti, J. Cassar, C. Grima, A. Karl, P. S. Wismayer, B. Mallia, J. Buhagiar, Low temperature carburised austenitic stainless steel for metal-on-metal tribological contact, Thin Solid Films, vol. 620, pp. 103-113, 2016, doi.org/10.1016/j.tsf.2016.07.084 | spa |
dcterms.references | Y. Wang, Y. Yan, Y. Su, L. Qiao, Release of metal ions from nano CoCrMo wear debris generated from tribo-corrosion processes in artificial hip implants, Journal of the Mechanical Behavior of Biomedical Materials, vol. 68, pp. 124-133, 2017, doi: 10.1016/j.jmbbm.2017.01.041 | spa |
dcterms.references | C.F. Almeida Alves, F. Oliveira, I. Carvalho, A.P. Piedade, S. Carvalho, Influence of albumin on the tribological behavior of Ag–Ti (C, N) thin films for orthopedic implants, Materials Science and Engineering: C, vol. 34, pp. 22-28, 2014, doi.org/10.1016/j.msec.2013.09.031 | spa |
dcterms.references | L.D. Trino, L.F.G. Dias, L.G.S. Albano, E.S. BronzeUhle, E.C. Rangel, C.F.O. Graeff, P.N. Lisboa-Filho, Zinc oxide surface functionalization and related effects on corrosion resistance of titanium implants, Ceramics International, vol. 44, iss. 4, pp. 4000-4008, 2018, doi.org/10.1016/j.ceramint.2017.11.195 | spa |
dcterms.references | B.J. Wu, Q.Y. Deng, Y.X. Leng, C.M. Wang, N. Huang, Characterization of adsorption and lubrication of synovial fluid proteins and HA on DLC joint bearings surface, Surface and Coatings Technology, vol. 320, pp. 320-332, 2017, doi.org/10.1016/j.surfcoat.2016.12.058 | spa |
dcterms.references | D. Choudhury, J. Lackner, R.A. Fleming, J. Goss, J. Chen, M. Zou, Diamond-like carbon coatings with zirconium-containing interlayers for orthopedic implants, Journal of the Mechanical Behavior of Biomedical Materials, vol. 68, pp. 51-61, 2017, doi.org/10.1016/j.jmbbm.2017.01.023 | spa |
dcterms.references | K. Oguri, T. Arai, Tribological properties and characterization of diamond-like carbon coatings with silicon prepared by plasma-assisted chemical vapour deposition, Surface and Coatings Technology, vol. 47, iss. 1-3, pp. 710-721, 1991, doi.org/10.1016/0257-8972(91)90344-V | spa |
dcterms.references | M. Alaluf, J. Appelbaum, L. Klibanov, D. Brinkerb, D. Scheiman, N. Croitoru, Amorphous diamondlike carbon films-a hard anti-reflecting coating for silicon solar cells, Thin Solid Films, vol. 256, iss. 1-2, 1995, doi.org/10.1016/0040- 6090(95)80024-7 | spa |
dc.identifier.doi | 10.24874/ti.2018.40.02.15 | |
dc.publisher.place | Serbia | spa |
dc.relation.citationedition | Vol.40 No.2.(2018) | spa |
dc.relation.citationendpage | 334 | spa |
dc.relation.citationissue | 2 (2018) | spa |
dc.relation.citationstartpage | 326 | spa |
dc.relation.citationvolume | 40 | spa |
dc.relation.cites | Bautista-Ruiz, J., Caicedo, J. C., & Aperador, W. (2018). Tribocorrosion Behavior of Amorphous Carbon-Silicon Coated Titanium in Biological Medium. Tribology in Industry, 40(2). | |
dc.relation.ispartofjournal | Tribology in Industry | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.subject.proposal | Carbon-silicon films | eng |
dc.subject.proposal | Wear | eng |
dc.subject.proposal | Corrosion | eng |
dc.subject.proposal | Plasma-assisted chemical vapor | eng |
dc.subject.proposal | deposition | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |