Mostrar el registro sencillo del ítem

dc.contributor.authorVillegas Estrada, Bernardo
dc.contributor.authorSánchez, Manuel Alejandro
dc.contributor.authorValencia-Jimenez, Arnubio
dc.date.accessioned2022-05-27T14:04:03Z
dc.date.available2022-05-27T14:04:03Z
dc.date.issued2022-04-29
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6484
dc.description.abstractPost-transcriptional gene silencing (PTGS) is an evolutionarily conserved plant defense mechanism against viruses. This paper aimed to evaluate a dsDNA construct (77 bp) as a template for in vitro production of virus-derived artificial small hairpin RNAs (shRNAs) and test for their potential to trigger the RNAi mechanism in Nicotiana benthamiana plants against CMV after their foliar infiltration. This approach allowed for the production of significant amounts of shRNAs (60-mers) quickly and easily. The gene silencing was confirmed using polymerase chain reaction (PCR), immunological-based assays, and real-time PCR (qPCR). The highest levels of gene silencing were recorded for mRNAs coding for replication protein (ORF1a), the viral suppressor of RNA silencing (ORF2b), and the capsid protein (ORF3b), with 98, 94, and 70% of total transcript silencing, respectively. This protocol provides an alternative to producing significant shRNAs that can effectively trigger the RNAi mechanism against CMVeng
dc.format.extent12 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Journal of Molecular Sciences Ispa
dc.relation.ispartofInternational Journal of Molecular Sciences ISSN: 1422-0067, 2022 vol:23 fasc: 9 págs: 4912 - 4938, DOI:10.3390/ijms23094938
dc.rightsEsta revista esta bajo una licencia Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/1422-0067/23/9/4938/htmlspa
dc.titleFoliar Infiltration of Virus-Derived Small Hairpin RNAs Triggers the RNAi Mechanism against the Cucumber Mosaic Viruseng
dc.typeArtículo de revistaspa
dcterms.referencesDoolittle, S.P. A new infectious mosaic disease of cucumber. Phytopathology 1916, 6, 145–147.spa
dcterms.referencesKenyon, L.; Kumar, S.; Tsai, W.S.; Hughes, J.D.A. Chapter Six—Virus diseases of peppers (Capsicum spp.) and their control. In Advances in Virus Research; Loebenstein, G., Katis, N., Eds.; Academic Press: Waltham, MA, USA, 2014; Volume 90, pp. 297–354.spa
dcterms.referencesBujarski, J.; Gallitelli, D.; García-Arenal, F.; Pallás, V.; Palukaitis, P.; Reddy, M.K.; Wang, A. ICTV Report Consortium 2019. ICTV Virus Taxonomy Profile: Bromoviridae. J. Gen. Virol. 2019, 100, 1206–1207.spa
dcterms.referencesGarcía-Arenal, F.; Palukaitis, P. Cucumber Mosaic Virus. In Encyclopedia of Virology, 3rd ed.; Mahy, B.W.J., van Regenmortel, M.H.V., Eds.; Academic Press: Oxford, UK, 2008; pp. 614–619.spa
dcterms.referencesScholthof, K.B.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 2011, 12, 938–954.spa
dcterms.referencesJacquemond, M. Cucumber mosaic virus. Adv. Virus Res. 2012, 84, 439–504.spa
dcterms.referencesWatters, K.E.; Choudhary, K.; Aviran, S.; Lucks, J.B.; Perry, K.L.; Thompson, J.R. Probing of RNA structures in a positive sense RNA virus reveals selection pressures for structural elements. Nucleic Acids Res. 2018, 46, 2573–2584.spa
dcterms.referencesDing, S.W.; Anderson, B.J.; Haase, H.R.; Symons, R.H. New overlapping gene encoded by the cucumber mosaic virus genome. Virology 1994, 198, 593–601.spa
dcterms.referencesRahman, M.S.; Ahmed, A.U.; Jahan, K.; Khatun, F. Management of Cucumber Mosaic Virus (CMV) infecting cucumber in bangladesh. Bangladesh J. Agril. Res. 2020, 45, 65–76.spa
dcterms.referencesFlorax, R.J.; Travisi, C.M.; Nijkamp, P.A. Meta-analysis of the willingness to pay for reductions in pesticide risk exposure. Eur. Rev. Agric. Econ. 2005, 32, 441–467.spa
dcterms.referencesSharma, V.K.; Sanghera, G.S.; Kashyap, P.L.; Sharma, B.B.; Chandel, C. RNA interference: A novel tool for plant disease management. Afr. J. Biotechnol. 2013, 12, 2303–2312.spa
dcterms.referencesCsorba, T.; Kontra, L.; Burgyán, J. Viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015, 479, 85–103.spa
dcterms.referencesSharp, P.A. RNA interference—2001. Genes Dev. 2001, 15, 485–490.spa
dcterms.referencesGuo, J.; Gao, S.; Lin, Q.; Wang, H.; Que, Y.; Xu, L. Transgenic sugarcane resistant to Sorghum mosaic virus based on coat protein gene silencing by RNA interference. BioMed Res. Int. 2015, 2015, 861907.spa
dcterms.referencesWang, F.; Li, W.; Zhu, J.; Fan, F.; Wang, J.; Zhong, W.; Wang, M.B.; Liu, Q.; Zhu, Q.H.; Zhou, T.; et al. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf. Virus Int. J. Mol. Sci. 2016, 17, 705.spa
dcterms.referencesKonakalla, N.C.; Kaldis, A.; Berbati, M.; Masarapu, H.; Voloudakis, A.E. Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco. Planta 2016, 244, 961–969spa
dcterms.referencesMitter, N.; Worrall, E.A.; Robinson, K.E.; Li, P.; Jain, R.G.; Taochy, C.; Fletcher, S.J.; Carroll, B.J.; Lu, G.Q.; Xu, Z.P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 2017, 3, 16207spa
dcterms.referencesKaldis, A.; Berbati, M.; Melita, O.; Reppa, C.; Holeva, M.; Otten, P.; Voloudakis, A. Exogenously applied dsRNA molecules deriving from the Zucchini yellow mosaic virus (ZYMV) genome move systemically and protect cucurbits against ZYMV. Mol. Plant Pathol. 2018, 19, 883–895.spa
dcterms.referencesDubrovina, A.S.; Aleynova, O.A.; Kalachev, A.V.; Suprun, A.R.; Ogneva, Z.V.; Kiselev, K.V. Induction of Transgene Supression in Plants via External Application of Synthetic dsRNA. Int. J. Mol. Sci. 2019, 20, 1585.spa
dcterms.referencesVoinnet, O. Induction and suppression of RNA silencing: Insights from viral infections. Nat. Rev. Genet. 2005, 6, 206–220.spa
dcterms.referencesWang, M.B.; Metzlaff, M. RNA silencing and antiviral defense in plants. Curr. Opin. Plant Biol. 2005, 8, 216–222.spa
dcterms.referencesSchwind, N.; Zwiebel, M.; Itaya, A.; Ding, B.; Wang, M.B.; Krczal, G.; Wassenegger, M. RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Mol. Plant Pathol. 2009, 10, 459–469spa
dcterms.referencesTabassum, B.; Nasir, I.A.; Khan, A.; Aslam, U.; Tariq, M.; Shahid, N.; Husnain, T. Short hairpin RNA engineering: In planta gene silencing of potato virus Y. Crop. Prot. 2016, 86, 1–8spa
dcterms.referencesAkbar, S.; Tahir, M.; Wang, M.B.; Liu, Q. Expression Analysis of Hairpin RNA Carrying Sugarcane mosaic virus (SCMV) Derived Sequences and Transgenic Resistance Development in a Model Rice Plant. BioMed Res. Int. 2017, 2017, 1646140.spa
dcterms.referencesAslam, U.; Tabassum, B.; Nasir, I.A.; Khan, A.; Husnain, T. A virus-derived short hairpin RNA confers resistance against sugarcane mosaic virus in transgenic sugarcane. Transgenic. Res. 2018, 27, 203–210.spa
dcterms.referencesWorrall, E.A.; Bravo-Cazar, A.; Nilon, A.T.; Fletcher, S.J.; Robinson, K.E.; Carr, J.P.; Mitter, N. Exogenous application of RNAiinducing double-stranded RNA inhibits aphid-mediated tansmission of a plant virus. Front. Plant Sci. 2019, 10, 265.spa
dcterms.referencesNamgial, T.; Kaldis, A.; Chakraborty, S.; Voloudakis, A. Topical application of double-stranded RNA molecules containing sequences of Tomato leaf curl virus and Cucumber mosaic virus confers protection against the cognate viruses. Physiol. Mol. Plant Pathol. 2019, 108, 101432.spa
dcterms.referencesVadlamudi, T.; Patil, B.L.; Kaldis, A.; Gopal, D.V.; Mishra, R.; Berbati, M.; Voloudakis, A. DsRNA-mediated protection against two isolates of Papaya ringspot virus through topical application of dsRNA in papaya. J. Virol. Methods 2020, 275, 113750.spa
dcterms.referencesLau, S.E.; Mazumdar, P.; Hee, T.W.; Song, A.L.A.; Othman, R.Y.; Harikrishna, J.A. Crude extracts of bacterially-expressed dsRNA protect orchid plants against Cymbidium mosaic virus during transplantation from in vitro culture. J. Hortic. Sci. Biotechnol. 2014, 89, 569–576spa
dcterms.referencesShen, W.; Yang, G.; Chen, Y.; Yan, P.; Tuo, D.; Li, X.; Zhou, P. Resistance of non-transgenic papaya plants to papaya ringspot virus (PRSV) mediated by intron-containing hairpin dsRNAs expressed in bacteria. Acta Virol. 2014, 58, 261–266.spa
dcterms.referencesZhang, H.; Demirer, G.S.; Zhang, H.; Ye, T.; Goh, N.S.; Aditham, A.J.; Cunningham, F.J.; Fan, C.; Landry, M.P. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl. Acad. Sci. USA 2019, 116, 7543–7548.spa
dcterms.referencesKim, N.Y.; Baek, J.Y.; Choi, H.S.; Chung, I.S.; Shin, S.; Lee, J.I.; Yang, J.M. Short-hairpin RNA-mediated gene expression interference in Trichoplusia ni cells. J. Microbiol. Biotechnol. 2012, 22, 190–198.spa
dcterms.referencesLivak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408.spa
dc.identifier.doihttps://doi.org/10.3390/ijms23094938
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol. 23 No. 9 (2022)spa
dc.relation.citationendpage4938spa
dc.relation.citationissue9 (2022)spa
dc.relation.citationstartpage4912spa
dc.relation.citationvolume23spa
dc.relation.citesVillegas-Estrada, B.; Sánchez, M.A.; Valencia-Jiménez, A. Foliar Infiltration of Virus-Derived Small Hairpin RNAs Triggers the RNAi Mechanism against the Cucumber Mosaic Virus. Int. J. Mol. Sci. 2022, 23, 4938. https://doi.org/ 10.3390/ijms23094938
dc.relation.ispartofjournalInternational Journal of Molecular Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalCMVeng
dc.subject.proposalcapsid proteineng
dc.subject.proposalNicotiana benthamianaeng
dc.subject.proposalgene silencingeng
dc.subject.proposalshRNAeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Esta revista esta bajo una licencia  Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como Esta revista esta bajo una licencia Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).