Mostrar el registro sencillo del ítem
Síntesis en estado sólido y caracterización de fosfato tricálcico dopado con magnesio y zinc
dc.contributor.author | García-Páez, Ismael H. | |
dc.contributor.author | Ardila Melo, Reinaldo | |
dc.contributor.author | Pinzón-Bedoya, Martha L. | |
dc.date.accessioned | 2021-11-04T14:20:11Z | |
dc.date.available | 2021-11-04T14:20:11Z | |
dc.date.issued | 2017-04-23 | |
dc.identifier.issn | 0255-6952 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/643 | |
dc.description.abstract | El desarrollo de biocerámicas para aplicaciones estructurales está limitado debido a su baja tenacidad y resistencia. Estas limitaciones conllevan a investigaciones que buscan mejorar su rendimiento mecánico mediante dopado con elementos similares a los presentes en el hueso humano y a materiales que no generen reacciones o toxicidad, tales como: CO32--, SiO44- , Mg2+, Zn2+, F-, Cl-, Ag+, Na+ y K+. Dentro de este contexto, la presente investigación fue enfocada a la síntesis de fosfato tricálcico (TCP) dopado con iones magnesio Mg+ y zinc Zn+, mediante sinterización en estado sólido. La adición de los dopantes se realizó en forma de óxidos, así: M-1(1 wt% Mg, 1wt% Zn), M-4 (4 wt% Mg, 1 wt% Zn) y M-7 (7 wt% Mg, 1 wt% Zn), mediante mezcla y calcinación de las materias primas a 900 °C y posterior sinterización a 1200, 1300 y 1400 °C. La caracterización microestructural se realizó mediante Microscopía Electrónica de Barrido, MEB, y la composicional mediante difracción de rayos X, DRX y espectrometría de energía dispersiva, EDX. Se determinó que la fase mayoritaria en todos los casos fue β-TCP y que el cambio de la faseβ→α-TCP solo se presentó en la muestra M-7 sinterizada a 1400°C. Adicionalmente, se realizó un estudio del comportamiento in vitro en suero fisiológico artificial (SFA), donde se observó baja formación de apatita en la superficie durante la inmersión de 28 días. Finalmente, se realizó un estudio mecánico mediante el ensayo de compresión diametral en probetas de disco de diámetro 10,0 ± 0,3 mm y espesor 2,8 ± 0,2 mm, donde se observó un ligero aumento de la resistencia comparado con fosfatos comerciales. | spa |
dc.description.abstract | The development of bioceramics for structural applications is limited by its toughness and strength. These limitations lead to investigations seeking to improve their mechanical performance by doping similar to those present in human bone and materials that do not generate reactions or toxic elements, such as CO32-, SiO44-, Mg2+, Zn2+, F-, Cl-, Ag+, Na+ y K+. In this context, the present investigation was focused on the synthesis of tricalcium phosphate (TCP) doped with magnesium Mg2+ and zinc Zn2+, by sintering in solid state, adding them in the form of oxides as follows M-1 (1 wt% Mg, 1 wt% Zn), M-4 (4 wt% Mg, 1 wt% Zn) y M-7 (7 wt% Mg, 1 wt% Zn), by mixture of raw materials, calcination at 900°C and sintering at 1200, 1300 and 1400°C. The microstructural characterization was carried out by MEB, compositional by XRD and elemental by EDX, where it was determined that the major phase was β-TCP as proposed and that the change of the β → α-TCP phase is only introduced 1400°C. Additionally, a study of in vitro behavior in simulated body fluid (SBF) was performed, showing the low formation of apatite on the surface during the immersion of 28 days. Finally, a mechanical study was conducted by the diametral compression test on disk specimen diameter 10,0 ± 0,3 mm and thickness 2,8 ± 0,2 mm, where a slight increase compared with phosphates resistance offered commercially observed. | eng |
dc.format.extent | 10 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Revista Latinoamericana de Metalurgia y Materiales | spa |
dc.relation.ispartof | Revista Latinoamericana de Metalurgia y Materiales | |
dc.rights | La Revista Latinoamericana de Metalurgia y Materiales, RLMM is the property of Universidad Simon Bolivar, Departmento de Ciencia de los Materiales and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. | eng |
dc.source | http://www.rlmm.org/ojs/index.php/rlmm/article/view/816 | spa |
dc.title | Síntesis en estado sólido y caracterización de fosfato tricálcico dopado con magnesio y zinc | spa |
dc.type | Artículo de revista | spa |
dcterms.references | Yoshida K, Hyuga H, Kondo N, Kita H, Sasaki M, Mitamura M, Toda Y. J. Am. Ceram. Soc. 2006; 89 (2): 688-690. | spa |
dcterms.references | Hadley B, Newman M, Hunt R. The Journal of Nutritional Biochemistry. 2010; 21, 297-303. | spa |
dcterms.references | Bandyopadhyay A, Bernard S, Xue W, Bose S. J Am. Ceram. Soc. 2006; 89 (9): 2675–2688. | spa |
dcterms.references | Yin X, CalderinL, Stott MJ, Sayer M.Biomaterials. 2002; 23: 4155-4163 | spa |
dcterms.references | Yoshida K, Kondo N, Kita H, Mitamura M, Hashimoto K, Toda Y. J Am. Ceram. Soc. 2005; 88(8): 2315-2318. | spa |
dcterms.references | Enderle R, Götz-Neunhoeffer F, Göbbels M, Müller FA, Greil P. Biomaterials. 2005; 26 (17): 3379-3384. | spa |
dcterms.references | Gomes S, Nedelec JM, Jallot E, Sheptyakov D, Renaudin G. Chem. Mater. 2011; 23 (12): 3072– 3085. | spa |
dcterms.references | Safronova TV, Mukhin EA, Putlyaev VI, Knotko AV, Evdokimov PV, Shatalova TB, Karpushkin EA. Ceramics International, 2017; 43 (1): 1310- 1317. | spa |
dcterms.references | Singh SS, Roy A, Lee B, Banerjee I, Kumta PN. Materials Science and Engineering: C, 2016; 6: 636-645. | spa |
dcterms.references | Wang MC, Chen HT, Shih WJ, Chang HF, Hon MH, Hung IM. Ceramics International, 2015; 41 (2): 2999-3008. | spa |
dcterms.references | Tanaka H, Ohnishi A. Advanced Powder Technology, 2013; 24 (6), 1028-1033. | spa |
dcterms.references | Nabiyouni M, Ren Y, Bhaduri SB. Materials Science and Engineering: C, 2015; 52: 11-17. | spa |
dcterms.references | Zhao J, Zhu YJ, Zheng JQ, Chen F, Wu, J. Microporous and Mesoporous Materials, 2013; 180: 79-85. | spa |
dcterms.references | Sebdani MM, Fathi MH. Ceramics International, 2012; 38 (2): 1325-1330 | spa |
dcterms.references | Ramezani S, Emadi R, Kharaziha M, Tavangarian F. MaterialsChemistry and Physics. 2016; 186: 415-425. | spa |
dcterms.references | Webler GD, Zapata MJM, Agra LC, Barreto E, Silva AOS, Hickmann JM, Fonseca EJS. Current Applied Physics, 2014; 14 (6): 876-880. | spa |
dcterms.references | García-Páez IH, Carrodeguas RG, De Aza A, Baudín C, Pena, P. Journal of the mechanical behavior of biomedical materials. 2014; 30: 1-15 | spa |
dcterms.references | Frasnelli M, Sglavo VM, Acta Biomater. 2016; 33: 283-289. | spa |
dcterms.references | Kawabata, K., Yamamoto, T. &Kitada, A., (2011). Substitution mechanism of Zinc ions in ßtricalcium phosphate. Physica B: Condensed Matter, [406] 4 890-894. | spa |
dcterms.references | Kannan S, Goetz-Neunhoeffer F, Neubauer J, Ferreira M. J. Am. Ceram. Soc. 2009; 7: 1592-1595 | spa |
dcterms.references | Carbajal L, Sainz MA, Serena S, Caballero AC, Caballero Á. J. Am. Ceram. Soc., 2011; 94(7): 2213-2219 | spa |
dcterms.references | Norma UNE-EN 843-5. Cerámicas técnicas avanzadas. Cerámicas monolíticas. Propiedades mecánicas a temperatura ambiente. Parte 5: Análisis estadístico. (Ratificada por AENOR en enero de 2007.) España: AENOR, 2006 | spa |
dcterms.references | Kokubo T, Takadama H. Biomaterials, 2006; 7: 2907-2915. | spa |
dcterms.references | Kotani S, Fujita Y, Kitsugi T, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo, T. Journal of biomedical materials research, 1991; 25(10), 1303- 1315. | spa |
dcterms.references | XinR. Leng Y, Chen J, Zhang Q. Biomaterials, 2005; 26(33): 6477-6486. | spa |
dcterms.references | Ryu HS, Hong KS, Lee JK, Kim DJ, Lee JH, Chang BS, Chung SS. Biomaterials,2004; 25(3): 393-401.(2004). | spa |
dcterms.references | Kanchana P, Sekar C. Journal of Minerals and Materials Characterization and Engineering, 2012; 11(10), 982-988. | spa |
dcterms.references | Torres PMC, Abrantes JCC, Kaushal A, Pina S, Döbelin N, Bohner M, Ferreira JMF. Journal of the European Ceramic Society, 2016; 36 (3): 817-827. | spa |
dcterms.references | Carrodeguas RG, De Aza A, Turrillas X, Pena P. y De Aza S,J. Am. Ceram. Soc., 2008; [91]: 1281- 1286 | spa |
dcterms.references | Xue W, Dahlquist K, Banerjee A, Bandyopadhyay A, Bose S. Journal of Materials Science: Materials in Medicine, 2008; 19(7): 2669-2677. | spa |
dcterms.references | Bouslama, N, Ayed FB, Bouaziz J. Ceramics International, 2009; 35(5): 1909-1917. | spa |
dcterms.references | Sakka S, Ayed FB, Bouaziz J. Mechanical properties of tricalcium phosphate–alumina composites. En: IOP Conference Series: Materials Science and Engineering 2012, (Vol. 28, No. 1, p. 012028). IOP Publishing. | spa |
dcterms.references | Koepp HE, Schorlemmer S, Kessler S, Brenner RE, Claes L, Günther KP, Ignatius AA. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004; 70 (2): 209-217. | spa |
dcterms.references | Journal of Minerals & Materials Characterization &Engineering, Vol. 11, No. 1, 2012, pp. 55-67. | spa |
dc.publisher.place | Venezuela | spa |
dc.relation.citationedition | Vol.37 No.2.(2017) | spa |
dc.relation.citationendpage | 266 | spa |
dc.relation.citationissue | 2(2017) | spa |
dc.relation.citationstartpage | 258 | spa |
dc.relation.citationvolume | 37 | spa |
dc.relation.cites | Melo, R. A., Pinzón-Bedoya, M. L., & García-Páez, I. (2017). SÍNTESIS EN ESTADO SÓLIDO Y CARACTERIZACIÓN DE FOSFATO TRICÁLCICO DOPADO CON MAGNESIO Y ZINC. La Revista Latinoamericana de Metalurgia y Materiales, RLMM, 37(2). | |
dc.relation.ispartofjournal | Revista Latinoamericana de Metalurgia y Materiales | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.proposal | Biocerámicas | spa |
dc.subject.proposal | Bioceramics | eng |
dc.subject.proposal | fosfato tricálcico dopado | spa |
dc.subject.proposal | doped tricalcium phosphate | eng |
dc.subject.proposal | compresión diametral | spa |
dc.subject.proposal | compression diametral | eng |
dc.subject.proposal | bioactividad | spa |
dc.subject.proposal | bioactivity | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |