Mostrar el registro sencillo del ítem

dc.contributor.authorPeralta Hernandez, Edwin
dc.contributor.authorSorzano Jimenez, Francisco
dc.contributor.authorCoba Salcedo, Milton Fabian
dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.contributor.authorValencia Ochoa, Guillermo
dc.date.accessioned2021-12-12T23:08:53Z
dc.date.available2021-12-12T23:08:53Z
dc.date.issued2018-06-06
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/6383
dc.description.abstractThis article analyses the roughness of ASTM-A36 steel both in its delivery state and after various cutting processes. The material was cut with different methods conventionally used in the metal-mechanic and construction industry, in addition to other non-conventional processes used to a lesser extent in the industry. Similarly, similar cuts were made to maintain test homogeneity and to analyze the faces of the cut on each specimen in a similar manner. Among the conventional cuts made to the specimens are the milling machine, oxy-cutting and cutting machine, while the non-conventional ones were applied by EDM and plasma, maintaining as far as possible similar cutting and working parameters. Subsequently, the roughness of the cut surface of each of the specimens was studied using a BAKER K130/8 analog tape roughness meter, which allowed quantifying the changes that occur in the material depending on the cutting method used and defined according to each method that can affect the surface finish and therefore the final application of the material. The graphical results allowed a comparative analysis of all the methods used, as well as the differences found between them and to obtain important conclusions that can be used in the new techniques of the manufacturing processes.eng
dc.format.extent08 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherContemporary Engineering Sciencesspa
dc.relation.ispartofContemporary Engineering Sciences
dc.rights© 2018 Edwin Peralta Hernandez, Francisco Sorzano Jimenez, Milton F. Coba Salcedo, Carlos Acevedo Penaloza and Guillermo Valencia Ochoa. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.eng
dc.sourcehttp://www.m-hikari.com/ces/ces2018/ces41-44-2018/85210.htmlspa
dc.titleExperimental study of the effect of cutting processes on the roughness of ASTM A36 steeleng
dc.typeArtículo de revistaspa
dcterms.referencesS. Vajpayee, Analytical study of surface roughness in turning, Wear, 70 (1981), no. 2, 165–175. https://doi.org/10.1016/0043-1648(81)90151-4spa
dcterms.referencesP. Patel, S. Soni, N. Kotkunde and N. Khanna, Study the effect of process parameters in plasma arc cutting on Quard-400 material using analysis of variance, Mater. Today Proc., 5 (2018), no. 2, 6023–6029. https://doi.org/10.1016/j.matpr.2017.12.206spa
dcterms.referencesE. Tomanik, M. El Mansori, R. Souza and F. Profito, Effect of waviness and roughness on cylinder liner friction, Tribol. Int., 120 (2018), 547–555. https://doi.org/10.1016/j.triboint.2018.01.012spa
dcterms.referencesD. Yang and Z. Liu, Surface topography analysis and cutting parameters optimization for peripheral milling titanium alloy Ti–6Al–4V, Int. J. Refract. Met. Hard Mater., 51 (2015), 192–200. https://doi.org/10.1016/j.ijrmhm.2015.04.001spa
dcterms.referencesT. Pancewicz and I. Mruk, Holographic contouring for determination of three-dimensional description of surface roughness, Wear, 199 (1996), no. 1, 127–131. https://doi.org/10.1016/0043-1648(96)07229-8spa
dcterms.referencesE. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa and H. H. Soliman, Roughness parameters, J. Mater. Process. Technol., 123 (2002), no. 1, 133–145. https://doi.org/10.1016/s0924-0136(02)00060-2spa
dcterms.referencesC. L. He, W. J. Zong and J. J. Zhang, Influencing factors and theoretical modeling methods of surface roughness in turning process: State-of-the-art, Int. J. Mach. Tools Manuf., 129 (2018), 15–26. https://doi.org/10.1016/j.ijmachtools.2018.02.001spa
dcterms.referencesN. L. Arrizabalaga, Máquinas: Prontuario : Técnicas, Máquinas, Herramientas, Paraninfo, 1997.spa
dcterms.referencesL. De Chiffre, P. Lonardo, H. Trumpold, D.A. Lucca, G. Goch, C.A. Brown, J. Raja, H.N. Hansen, Quantitative Characterisation of Surface Texture, CIRP Ann., 49 (2000), no. 2, 635–652. https://doi.org/10.1016/s0007-8506(07)63458-1spa
dcterms.referencesISO 25178-605, Geometrical product specifications (GPS) – Surface textute: Areal - Part 605: Nominal characteristics of non contact (point autofocus probe) instruments, 2014. https://doi.org/10.3403/30205377spa
dc.identifier.doihttps://doi.org/10.12988/ces.2018.85210
dc.publisher.placeBulgariaspa
dc.relation.citationeditionVol.11 No.41.(2018)spa
dc.relation.citationendpage2022spa
dc.relation.citationissue41(2018)spa
dc.relation.citationstartpage2015spa
dc.relation.citationvolume11spa
dc.relation.citesHernández, E. P., Jímenez, F. S., Salcedo, M. F. C., Peñaloza, C. A., & Ochoa, G. V. (2018). Experimental Study of the Effect of Cutting Processes on the Roughness of ASTM A36 Steel.
dc.relation.ispartofjournalContemporary Engineering Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalRoughnesseng
dc.subject.proposalTestingeng
dc.subject.proposalSurface finishingeng
dc.subject.proposalCutting processeseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem