Mostrar el registro sencillo del ítem

dc.contributor.authorLizarazo Bohórquez, Cristina
dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.contributor.authorValencia Ochoa, Guillermo
dc.date.accessioned2021-12-12T16:17:09Z
dc.date.available2021-12-12T16:17:09Z
dc.date.issued2018-07
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/6380
dc.description.abstractThis paper presentsan energetic and exergetic analysis for ageneration of turbine work according to the variation of the pressure in the condenser regenerative Rankine cycle, implementing an educational graphical user interface known as Power Cycle version 2.0; that is used as a pedagogical strategy in thefield ofengineering education. The mains objectives were, analyzethe efficiency of first and second thermodynamic law, and the generation of turbine work according to the variation of thecondenser pressure, at three different temperatures in the boiler, as well as analyzing the components of the system to identify and quantify where the exergy destruction was maximum. According to the results in the cases studied, the percentage ratio of the exergydestruction to the total exergy destruction was found to be maximum in the boiler 62.18%, then the turbine 22.79%, and finally 15.03% in the pumps, the heater and the condenser. On the other hand, the maximum calculated thermal efficiency was 38.34%, while the maximum exergetic efficiency was 62.81%. A significant increase in efficiency of the cycle is obtained by decreasing the pressure in the condenser.eng
dc.format.extent06 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Journal of Engineering and Technologyspa
dc.relation.ispartofInternational Journal of Engineering and Technology
dc.rights© 2009 - 2021 Engg Journals Publicationseng
dc.sourcehttp://www.enggjournals.com/ijet/abstract.html?file=18-10-03-102spa
dc.titleTheoretical modeling of a steam power cycle using an interactive computational tooleng
dc.typeArtículo de revistaspa
dcterms.referencesR. Shang, Y. Zheng, W. Shi, X. Wang, and Y. Zhang, “Fresh look and understanding on carnot cycle,” Energy Procedia, vol. 61, pp. 2898–2901, 2014.spa
dcterms.referencesU. Lucia, “Carnot efficiency: Why?,” Phys. A Stat. Mech. its Appl., vol. 392, no. 17, pp. 3513–3517, 2013.spa
dcterms.referencesY. a. Cengel and M. E. Boles, “Termodinamica - Cengel 7th,” Termodinamica, p. 1456, 2011.spa
dcterms.referencesR. F. Andres, “Corrosion in the Boiler,” Ind. \& Eng. Chem., vol. 46, pp. 990–992, 1954.spa
dcterms.referencesLalatendu Pattanayak and Jaya Narayan Sahu and Pravakar Mohanty, “Combined cycle power plant performance evaluation using exergy and energy analysis,” Environ. Prog. \& Sustain. Energy, vol. 36, pp. 1180–1186, 2017.spa
dcterms.referencesM. Moran and H. Shapiro, Fundamentals of Engineering Thermodynamics. 2006.spa
dcterms.referencesS. C. Kaushik, V. S. Reddy, and S. K. Tyagi, “Energy and exergy analyses of thermal power plants: A review,” Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 1857–1872, May 2011.spa
dcterms.referencesX.-T. Cheng and X.-G. Liang, “Applicability of the minimum entropy generation method for optimizing thermodynamic cycles,” Chinese Phys. Soc. IOP Publ. Ltd, vol. 22, 2013.spa
dcterms.referencesJ. Soundhar, M. T. Durai, R. Vijay, and M. Siva, “Parametric Study and Analysis of Varying the Condenser Pressure in Thermal Power Plant,” vol. 3, no. Xii, pp. 181–189, 2015.spa
dcterms.referencesA. Bejan, “Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture,” Int. J. Energy Res., vol. 26, no. 7, 2002.spa
dcterms.referencesT. J. Kotas, “Exergy criteria of performance for thermal plant: Second of two papers on exergy techniques in thermal plant analysis,” Int. J. Heat Fluid Flow, vol. 2, no. 4, pp. 147–163, Dec. 1980.spa
dcterms.referencesG. Tsatsaronis and M.-H. Park, “On avoidable and unavoidable exergy destructions and investment costs in thermal systems,” Energy Convers. Manag., vol. 43, no. 9–12, pp. 1259–1270, Jun. 2002.spa
dcterms.referencesS. Kelly, G. Tsatsaronis, and T. Morosuk, “Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts,” Energy, vol. 34, no. 3, pp. 384–391, Mar. 2009.spa
dc.identifier.doihttps://dx.doi.org/10.21817/ijet/2018/v10i3/181003102
dc.publisher.placeIndiaspa
dc.relation.citationeditionVol.10 No.3.(2018)spa
dc.relation.citationendpage833spa
dc.relation.citationissue3(2018)spa
dc.relation.citationstartpage828spa
dc.relation.citationvolume10spa
dc.relation.citesLizarazo, C., Peñaloza, C. A., & Ochoa, G. V. THEORETICAL MODELING OF A STEAM POWER CYCLE USING AN INTERACTIVE COMPUTATIONAL TOOL.
dc.relation.ispartofjournalInternational Journal of Engineering and Technologyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalExergetic balanceeng
dc.subject.proposalenergy balanceeng
dc.subject.proposalefficiencyeng
dc.subject.proposalregenerative Rankine cycleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem