Show simple item record


Características superficiales de la arcilla utilizando microscopía de fuerza atómica

dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.contributor.authorFlorez, Eder
dc.contributor.authorGarcía León, Ricardo Andres
dc.date.accessioned2021-11-02T19:35:44Z
dc.date.available2021-11-02T19:35:44Z
dc.date.issued2018-06-07
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/605
dc.description.abstractThe first component for the manufacture of masonry products used in construction is clay, which provides the plasticity that facilitates the molding and handling of the product. The second component is the feldspar in form of alumina (Al2O3) which is used as flux. The third one is silica (SiO2) which is used as a filling material and stabilizer. These elements are determined by chemical composition using fluorescence analysis or X-ray diffraction, which is the basis of the modern classification of minerals. Thereby, the main objective of this research is to study the surface characteristics of clay samples from an industrial company producing H-10 blocks in the region of Norte de Santander, by studying the surfaces of the samples selected through the analysis by Atomic Force Microscopy, in order to compare the results with those found in the literature, and at the same time taking into account the chemical elements in their highest composition. The results show that this is a technique that allows the identification of clay components, thus validating what has been found in physical and chemical analysis, expecting to provide a scientific contribution by AFM, because there is little information related to the characterization topography of clay materials.eng
dc.description.abstractEl primer componente para la fabricación de productos de mampostería para la construcción es la arcilla, la cual aporta la plasticidad que facilita el moldeo y el manejo del producto. El segundo componente es el feldespato en su formación como alúmina (Al2O3) que se utiliza como fundente. La tercera es la sílice (SiO2) que se utiliza como un material de relleno y estabilizador. Estos elementos se determinan mediante la composición química por análisis de fluorescencia o difracción de rayos X, la cual es la base de la clasificación moderna de los minerales. De esta manera, el principal objetivo de este trabajo es estudiar las características superficiales de muestras de arcilla de una empresa dedicada a producción de bloques H-10 en la región Norte Santandereana, mediante el estudio de las superficies de las muestras seleccionadas a través de la técnica de Microscopía de Fuerza Atómica con el propósito de comparar los resultados con los obtenidos en la bibliografía teniendo en cuenta los elementos químicos en su mayor composición. Los resultados demuestran que ésta es una técnica que permite identificar los componentes de la arcilla validando de esta manera lo encontrado en los análisis físicos y químicos, con lo cual se espera brindar un aporte científico por AFM o MFA, debido a que existe poca información relacionada en la caracterización topográfica de materiales arcillosos.spa
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista Facultad de Ingeniería Universidad de Antioquiaspa
dc.relation.ispartofRevista Facultad de Ingeniería Universidad de Antioquia
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution Licenseeng
dc.sourcehttps://revistas.udea.edu.co/index.php/ingenieria/article/view/327987spa
dc.titleClay surface characteristics using atomic force microscopyeng
dc.titleCaracterísticas superficiales de la arcilla utilizando microscopía de fuerza atómicaspa
dc.typeArtículo de revistaspa
dcterms.referencesO. Sahin, S. Magonov, C. Su, C. F. Quate, and O. Solgaard, “An atomic force microscope tip designed to measure time-varying nanomechanical forces,” Nature Nanotechnology , vol. 2, no. 8, pp. 507–514, Jul. 2007.spa
dcterms.referencesE. A. López and S. D. Solares, “El microscopio de fuerza atómica: métodos y aplicaciones,” Revista de la Universidad del Valle Guatemala , vol. 28, no. 1, pp. 14–28, 2014.spa
dcterms.references(2012) Atomic force microscopy. University of Rochester. Accessed Apr. 24, 2017. [Online]. Available: www.optics.rochester.edu/workgroups/cml/opt307/spr12/nilotpal/ HTMLfiles/AFM.htmspa
dcterms.referencesV. Ivanov, J. Chu, V. Stabnikov, and B. Li, “Estrengthening of soft marine clay using bioencapsulation,” Journal Marine Georesources & Geotechnology , vol. 33, no. 4, pp. 320–324, Jan. 2015.spa
dcterms.referencesS. Pineda, Z. J. Han, and K. Ostrikov, “Plasma-enabled carbon nanostructures for early diagnosis of neurodegenerative diseases,” Materials , vol. 7, no. 7, pp. 4896–4929, Jun. 2014.spa
dcterms.referencesL. Vázquez. Afm (atomic force microscope). [Online]. Available: www.icmm.csic.es/fis/espa/afm.htmlspa
dcterms.referencesN. S. et al. , “Characterization of nanoreinforcement dispersion in inorganic nanocomposites: A review,” Materials , vol. 7, no. 6, pp. 4148–4181, May 2014.spa
dcterms.referencesS. E. et al. , “Manipulation of the catalyst-support interactions for inducing nanotube forest growth,” J. Appl. Phys. , vol. 109, no. 4, pp. 044 303.1–044 303.7, Feb. 2011.spa
dcterms.referencesY. Kobayashi, V. Salgueiriño, and L. M. Liz, “Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating,” Chemistry of Materials , vol. 13, no. 5, pp. 1630–1633, Apr. 2001.spa
dcterms.referencesL. B. Monroy, J. J. Olaya, M. Rivera, A. Ortiz, and G. Santana, “Growth study of y-ba-cu-o on buffer layers and different substrates made by ultrasonic spray pyrolysis,” Rev. Latinoam. Metal. y Mater. , vol. 32, no. 1, pp. 21–29, Jan. 2012.spa
dcterms.referencesK. Kim, B. A. Lee, X. H. Piao, H. J. Chung, and Y. J. Kim, “Surface characteristics and bioactivity of an anodized titanium surface,” J. Periodontal Implant Sci. , vol. 43, no. 4, pp. 198–205, Aug. 2012.spa
dcterms.referencesX. W. T. et al. , “In vitro effect of a corrosive hostile ocular surface on candidate biomaterials for keratoprosthesis skirt,” Br. J. Ophthalmol. , vol. 96, pp. 1252–1258, Sep. 2012.spa
dcterms.referencesT. Öhlund, J. Örtegren, S. Forsberg, and H. E. Nilsson, “Paper surfaces for metal nanoparticle inkjet printing,” Appl. Surf. Sci. , vol. 259, pp. 731–739, Oct. 2012.spa
dcterms.referencesP. Henrique, C. Camargo, K. G. Satyanarayana, and F. Wypych, “Nanocomposites: Synthesis, structure, properties and new application opportunities,” Mater. Res. , vol. 12, no. 1, pp. 1–39, Jan. 2009.spa
dcterms.referencesM. R. Belkhedkar, A. U. Ubale, Y. S. Sakhare, N. Zubair, and M. Musaddique, “Characterization and antibacterial activity of nanocrystalline mn doped fe 2 o 3 thin films grown by successive ionic layer adsorption and reaction method,” J. Assoc. Arab Univ. Basic Appl. Sci , vol. 21, pp. 38–44, Oct. 2016.spa
dcterms.referencesP . Lu and Y. L. Hsieh, “Highly pure amorphous silica nano-disks from rice straw,” JPowder Technol. , vol. 225, pp. 149–155, Oct. 2012.spa
dcterms.referencesD. A. C. Brownson, D. K. Kampouris, and C. E. Banks, “Graphene electrochemistry: Fundamental concepts through to prominent applications,” Chemical Society Reviews , vol. 41, no. 21, pp. 6944–6976, Nov. 2012.spa
dcterms.referencesB. R. B. et al. (1999, Dec. 9) Atomic force microscopy study of clay mineral dissolution atomic force. [Online]. Available: https://vtechworks.lib.vt.edu/bitstream/handle/10919/25984/Bickmorebrb_diss.pdf?sequence=3.spa
dcterms.referencesM. Prasad, M. Kopycinska, U. Rabe, and W. Arnold, “Measurement of young’s modulus of clay minerals using atomic force acoustic microscopy,” Geophys. Res. Lett. , vol. 29, no. 8, pp. 13.1–13.4, Apr. 2002.spa
dcterms.referencesV. Gupta, M. A. Hampton, A. V. Nguyen, and J. D. Miller, “Crystal lattice imaging of the silica and alumina faces of kaolinite using atomic force microscopy,” J. Colloid Interface Sci. , vol. 352, no. 1, pp. 75–80, Dec. 2010.spa
dcterms.referencesR. A. García and R. Bolívar, “Caracterización hidrométrica de las arcillas utilizadas en la fabricación de productos cerámicos en ocaña, norte de santander,” INGECUC , vol. 13, no. 1, pp. 47–56, 2017.spa
dcterms.referencesR. A. García, R. Bolívar, and E. N. Flórez, “Validación de las propiedades físico-mecánicas de bloques h-10 fabricados en ocaña norte de santander y la región,” Ingenio UFPSO , vol. 10, no. 1, pp. 17–26, 2016.spa
dcterms.referencesF. D. B. de Sousa and C. H. Scuracchio, “The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blends based on elastomers,” Polímeros , vol. 24, no. 6, pp. 661–672, Nov. 2014.spa
dcterms.referencesX. Zhang, H. Yi, Y. Zhao, and S. Song, “Quantitative determination of isomorphous substitutions on clay mineral surfaces through afm imaging: A case of mica,” Colloids Surfaces A Physicochem. Eng. Asp , vol. 533, pp. 55–60, Nov. 2017.spa
dcterms.referencesM. Brigatti, E. Galán, and B. K. G. Theng, “Chapter 2 structures and mineralogy of clay minerals,” vol. 1, pp. 19–86, Dec 2006.spa
dcterms.referencesV. Gélinas and D. Vidal, “Determination of particle shape distribution of clay using an automated afm image analysis method,” Powder Technol. , vol. 203, no. 2, pp. 254–264, Nov. 2010.spa
dcterms.referencesR. A. Schoonheydt, “Reflections on the material science of clay minerals,” Appl. Clay Sci. , vol. 131, pp. 107–112, Oct. 2015.spa
dcterms.referencesM. B. Roquet, “Mineralogía de la pegmatita casa de piedra, grupo pegmatítico villa praga - las lagunas, subgrupo potrerillos, san luis, argentina,” in 11° Congreso de mineralogía y metalogenia , San Luis, Argentina, 2013, pp. 133–138.spa
dcterms.referencesS. M. Rozo, J. Sánchez, and J. F. Gelves, “Evaluación de minerales alumino silicatos de norte de santander para fabricar piezas cerámicas de gran formato,” Rev. Fac. Ing. , vol. 24, no. 38, pp. 53–61, 2015.spa
dcterms.referencesN. J. Perales and M. Barrera, “Análisis estructural por drx de una arcilla natural colombiana modificada por pilarización,” Rev. Invest. Univ. Quindío. , vol. 24, no. 1, pp. 100–106, 2013.spa
dcterms.referencesE. Ramos, J. J. Guzmán, M. C. Sandoval, and Y. Gallaga, “Caracterización de arcillas del estado de guanajuato y su potencial aplicación en cerámica,” Acta Univ. , vol. 12, no. 1, pp. 23–30, 2002.spa
dcterms.referencesPowderTechnolspa
dcterms.referencesA. Sachan, “Use of atomic force microscopy (afm) of microfabric study of cohesive soils,” J.Microsc. , vol. 232, no. 3, pp. 422–431, Nov. 2008.spa
dcterms.referencesL. F. Vesga, “Equivalent effective stress and compressibility of unsaturated kaolinite clay subjected to drying,” J. Geotech. Geoenvironmental Eng. , vol. 134, no. 3, pp. 366–378, Mar. 2008.spa
dcterms.referencesC. M. F. Vieira, R. Sánchez, and S. N. Monteiro, “Characteristics of clays and properties of building ceramics in the state of rio de janeiro, brazil,” Constr. Build. Mater. , vol. 22, no. 5, pp. 781–787, May 2008.spa
dcterms.referencesJ. D. Santos, P. Y. Malagón, and E. M. Cordoba, “Caracterización de arcillas y preparación de pastas cerámicas para la fabricación de tejas y ladrillos en la región de barichara, santander,” DYNA , vol. 78, no. 167, pp. 50–58, Jul. 2011.spa
dcterms.referencesC. M. Ríos, “Uso de materias primas colombianas para el desarrollo de baldosa cerámicas con alto grado de gresificación,” M.S. thesis, Facultad de Minas Escuela de Ingeniería de Materiales, Universidad Nacional de Colombia, Medellín, Colombia, 2009.spa
dcterms.referencesL. C. Illera, “Raw materials for the ceramics industry from norte de santander. i. mineralogical, chemical and physical characterization,” Rev. Fac. Ing. Univ. Antioquia , no. 80, pp. 31–37, Jul. 2016.spa
dc.identifier.doihttps://doi.org/10.17533/udea.redin.n87a04
dc.publisher.placeColombiaspa
dc.relation.citationeditionNo.87.(2018)spa
dc.relation.citationendpage34spa
dc.relation.citationissue87(2018)spa
dc.relation.citationstartpage23spa
dc.relation.citesGarcía-León, R. A., Flórez-Solano, E. N., & Acevedo-Peñaloza, C. H. (2018). Clay surface characteristics using atomic force microscopy. Revista Facultad de Ingeniería Universidad de Antioquia, (87), 23-34.
dc.relation.ispartofjournalRevista Facultad de Ingeniería Universidad de Antioquiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalClayseng
dc.subject.proposalmasonryeng
dc.subject.proposalFRXeng
dc.subject.proposalDRXeng
dc.subject.proposalAFMeng
dc.subject.proposalArcillasspa
dc.subject.proposalmamposteríaeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record