Show simple item record

dc.contributor.authorMeramo, Samir
dc.contributor.authorUrbina-Suarez, Nestor Andres
dc.contributor.authorGonzález-Delgado, Angel Darío
dc.date.accessioned2021-10-30T20:09:31Z
dc.date.available2021-10-30T20:09:31Z
dc.date.issued2019-11-10
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/519
dc.description.abstractChitosan is a biopolymer that has emerged as a useful material with applications in sectors such as medicine, food industry, water treatment systems, among others. This biomaterial is synthesized from shrimp exoskeleton, becoming an alternative of waste valorization. Chitosan can be used as main feedstock for production of bio-adsorbents modified with nanoparticles for pollution removal purposes. In this work, an environmental assessment and exergy analysis of a large-scale production of chitosan microbeads modified with TiO2 nanoparticles were developed with the aim of evaluating potential environmental impacts and energy/exergy performance. Aspen Plus ® software was used to develop process which allows quantification of extended mass and energy flows, property estimation, calculation of physical exergy flows, among others. The environmental evaluation was performed using the Waste Reduction Algorithm through the WAR GUI software. Environmental results showed that the presence of monovalent alcohols (propanol and ethanol) increased environmental effects related to the Photochemical Oxidation Potential category. From toxicological viewpoint, titanium tetra-isopropoxide affected Human Toxicity by Ingestion and Terrestrial Toxicity categories. Thought exergy analysis was identified that Centrifugation 2 is the process unit with highest irreversibilities, and also was founded that the overall exergy efficiency of the process was 0.0439%. These findings suggested that the proposed design requires the application of process improvement strategies in order to obtain better energy performance.eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Cleaner Productionspa
dc.relation.ispartofJournal of Cleaner Production ISSN: 0959-6526, 2019 vol:237 fasc: págs: 1 - 10, DOI:10.1016/j.jclepro.2019.117804
dc.rights2019 Elsevier Ltd. All rights reserved.eng
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S0959652619326642?via%3Dihub#!spa
dc.titleComputer-aided environmental and exergy analyses of a large-scale production of chitosan microbeads modified with TiO2 nanoparticleseng
dc.typeArtículo de revistaspa
dcterms.referencesAlonso-Farinas, B., Gallego-Schmid, A., Haro, P., Azapagic, A., 2018. Environmental ~ assessment of thermo-chemical processes for bio-ethylene production in comparison with bio-chemical and fossil-based ethylene. J. Clean. Prod. 202, 817e829. https://doi.org/10.1016/j.jclepro.2018.08.147.spa
dcterms.referencesAnsarinasab, H., Mehrpooya, M., Sadeghzadeh, M., 2019. An exergy-based investigation on hydrogen liquefaction plant-exergy , exergoeconomic , and exergoenvironmental analyses. J. Clean. Prod. 210, 530e541. https://doi.org/10.1016/ j.jclepro.2018.11.090.spa
dcterms.referencesAntonino, R.S.C.M.D.Q., Fook, B.R.P.L., Lima, V.A.D.O., Rached, R. I.D.F., Lima, E.P.N., Lima, R.J.D.S., Covas, C.A.P., Fook, M.V.L., 2017. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar. Drugs 15, 1e12. https://doi.org/10.3390/md15050141.spa
dcterms.referencesAskari, M.B., Tavakoli Banizi, Z., Seifi, M., Bagheri Dehaghi, S., Veisi, P., 2017. Synthesis of TiO2 nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2/MWCNT nanocomposite. Optik 149, 447e454. https://doi.org/10.1016/j.ijleo.2017.09.078.spa
dcterms.referencesAzapagic, a, Clift, R., 1999. The application of life cycle assessment to process optimisation. Comput. Chem. Eng. 23, 1509e1526. https://doi.org/10.1016/ S0098-1354(99)00308-7.spa
dcterms.referencesBahadori, F., Nalband Oshnuie, M., 2019. Exergy analysis of indirect dimethyl ether production process. Sustain. Energy Technol. Assess. 31, 142e145. https://doi. org/10.1016/j.seta.2018.12.025.spa
dcterms.referencesBait, O., 2019. Exergy, environ-economic and economic analyses of a tubular solar water heater assisted solar still. J. Clean. Prod. 212, 630e646. https://doi.org/10. 1016/j.jclepro.2018.12.015.spa
dcterms.referencesCarvajal, J.C., Gomez, A., Cardona, C.A., 2016. Comparison of lignin extraction pro- cesses: economic and environmental assessment. Bioresour. Technol. 214, 468e476. https://doi.org/10.1016/j.biortech.2016.04.103.spa
dcterms.referencesChoi, W., Ooka, R., Shukuya, M., 2018. Exergy analysis for unsteady-state heat conduction. Int. J. Heat Mass Transf. 116, 1124e1142. https://doi.org/10.1016/j. ijheatmasstransfer.2017.09.057.spa
dcterms.referencesEl-Halwagi, M.M., 2012. Sustainable Design through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement. https://doi.org/10.1016/B978-1-85617- 744-3.00001-1.spa
dcterms.referencesFernandes Mosquim, R., De Oiliveira Junior, S., Mady Keutenedjian, C., 2018. Modelling the exergy behavior of sao paulo state in Brazil. J. Clean. Prod. 197, 643e655. https://doi.org/10.1016/j.jclepro.2018.06.235.spa
dcterms.referencesHaider, J., Anbari, A., Corre, O.Le, Ferrao, P., 2017. Exploring potential environmental ~ applications of TiO2 nanoparticles. Energy Procedia 119, 332e345. https://doi. org/10.1016/j.egypro.2017.07.117.spa
dcterms.referencesHernandez, V., Romero-García, J.M., D avila, J.A., Castro, E., Cardona, C.A., 2014. Techno-economic and environmental assessment of an olive stone based biorefinery. Resour. Conserv. Recycl. 92, 145e150. https://doi.org/10.1016/j. resconrec.2014.09.008.spa
dcterms.referencesHerrera, R., Salgado, J., Peralta, Y., Gonzalez, A., 2017. Environmental evaluation of a palm-based biorefinery under north-Colombian conditions. Chem. Eng. Trans. 57, 193e198spa
dcterms.referencesKalaivani, R., Maruthupandy, M., Muneeswaran, T., Beevi, A.H., Anand, M., Ramakritinan, C.M., Kumaraguru, A.K., 2018. Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front. Lab. Med. 2, 30e35. https://doi.org/10.1016/j.flm.2018.04.002spa
dcterms.referencesLampinen, M.J., Wiksten, R., Sarvi, A., Saari, K., Penttinen, M., 2011. Minimization of exergy losses in combustion processes with an illustration of a membrane combustion. Bioenergy Technol. 133e139.spa
dcterms.referencesLi, Q., Jia, R., Shao, J., He, Y., 2019. Photocatalytic degradation of amoxicillin via TiO2 nanoparticle coupling with a novel submerged porous ceramic membrane reactor. J. Clean. Prod. 209, 755e761. https://doi.org/10.1016/j.jclepro.2018.10. 183spa
dcterms.referencesMartínez Gonz alez, A., Silva Lora, E.E., Escobar Palacio, J.C., 2019. Syngas production from oil sludge gasification and its potential use in power generation systems: an energy and exergy analysis. Energy 169, 1175e1190. https://doi.org/10.1016/j. energy.2018.11.087.spa
dcterms.referencesMehdizadeh-Fard, M., Pourfayaz, F., 2019. Advanced exergy analysis of heat exchanger network in a complex natural gas refinery. J. Clean. Prod. 206, 670e687. https://doi.org/10.1016/j.jclepro.2018.09.166.spa
dcterms.referencesMeramo-Hurtado, S., Ojeda-Delgado, K., Sanchez-Tuir an, E., 2018. Environmental assessment of a Biorefinery : case study of a purification stage in biomass gasification. Contemp. Eng. Sci. 11, 113e120.spa
dcterms.referencesMeramo, S.I., Bonfante, H., De Avila-Montiel, G., Herrera-Barros, A., GonzalezDelgado, A., 2018. Environmental assessment of a large-scale production of TiO2 nanoparticles via green chemistry. Chem. Eng. Trans. 70, 1063e1068. https://doi.org/10.3303/CET1870178.spa
dcterms.referencesMoncada, J., Tamayo, J.A., Cardona, C.A., 2014. Integrating first, second, and third generation biorefineries: incorporating microalgae into the sugarcane biorefinery. Chem. Eng. Sci. 118, 126e140. https://doi.org/10.1016/j.ces.2014.07.035spa
dcterms.referencesMoreno-Sader, K., Meramo-Hurtado, S.I., Gonzalez-Delgado, A.D., 2019. Computer- aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks. Renew. Sustain. Energy Rev. 112, 42e57. https://doi.org/10. 1016/j.rser.2019.05.044.spa
dcterms.referencesNakamatsu, J., 2012. La quitosana. Rev. Química PUCP 10e12.spa
dcterms.referencesOjeda, K.A., S anchez, E.L., Suarez, J., Avila, O., Quintero, V., El-Halwagi, M., Kafarov, V., 2011. Application of computer-aided process engineering and exergy analysis to evaluate different routes of biofuels production from lignocellulosic biomass. In: Industrial and Engineering Chemistry Research, pp. 2768e2772. https://doi.org/10.1021/ie100633gspa
dcterms.referencesPapong, S., Rewlay-ngoen, C., Itsubo, N., Malakul, P., 2017. Environmental life cycle assessment and social impacts of bioethanol production in Thailand. J. Clean. Prod. 157, 254e266. https://doi.org/10.1016/j.jclepro.2017.04.122.spa
dcterms.referencesPeralta-Ruiz, Y., Gonzalez-Delgado, A.D., Kafarov, V., 2013. Evaluation of alternatives for microalgae oil extraction based on exergy analysis. Appl. Energy 101, 226e236.spa
dcterms.referencesPerez, D.L., Luna, E.J., Peralta-ruiz, Y.Y., 2016. Techno-economic sensitivity of biohydrogen production from empty palm fruit bunches under Colombian conditions. Chem. Eng. Trans. 52, 1117e1122. https://doi.org/10.3303/CET1652187.spa
dcterms.referencesPetrescu, L., Cormos, C.C., 2015. Waste reduction algorithm applied for environmental impact assessment of coal gasification with carbon capture and storage. J. Clean. Prod. 104, 220e235. https://doi.org/10.1016/j.jclepro.2014.08.064.spa
dcterms.referencesRamirez-Cando, L.J., Spugnoli, P., Matteo, R., Bagatta, M., Tavarini, S., Foschi, L., Lazzeri, L., 2017. Environmental assessment of flax straw production for nonwood pulp mills. Chem. Eng. Trans. 58, 787e792. https://doi.org/10.3303/ CET1758132.spa
dcterms.referencesRamírez, Y., Kraslawski, A., Cisternas, L.A., 2019. Decision-support framework for the environmental assessment of water treatment systems. J. Clean. Prod. 225, 599e609. https://doi.org/10.1016/j.jclepro.2019.03.319.spa
dcterms.referencesRathnayaka, S., Khan, F., Amyotte, P., 2014. Risk-based process plant design considering inherent safety. Saf. Sci. 70, 438e464. https://doi.org/10.1016/j.ssci. 2014.06.004.spa
dcterms.referencesRestrepo-Serna, D.L., Martínez-Ruano, J.A., Cardona-Alzate, C.A., 2018. Energy efficiency of biorefinery schemes using sugarcane bagasse as raw material. Energies 11, 3474. https://doi.org/10.3390/en11123474.spa
dcterms.referencesRinaudo, M., 2006. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603e632. https://doi.org/10.1016/j.progpolymsci.2006.06.001.spa
dcterms.referencesSmith, R.L., Ruiz-Mercado, G.J., Gonzalez, M.A., 2015. Using GREENSCOPE indicators for sustainable computer-aided process evaluation and design. Comput. Chem. Eng. 81, 272e277. https://doi.org/10.1016/j.compchemeng.2015.04.020.spa
dcterms.referencesVargas, M.A., Rodríguez-Paez, J.E., 2017. Amorphous TiO2 nanoparticles: synthesis and antibacterial capacity. J. Non-Cryst. Solids 459, 192e205. https://doi.org/10.1016/j.jnoncrysol.2017.01.018.spa
dcterms.referencesYang, K., Zhu, N., Ding, Y., Chang, C., Wang, D., Yuan, T., 2019. Exergy and exergoeconomic analyses of a combined cooling, heating , and power (CCHP) system based on dual-fuel of biomass and natural gas. J. Clean. Prod. 206, 893e906. https://doi.org/10.1016/j.jclepro.2018.09.251.spa
dcterms.referencesZhang, H., Yun, S., Song, L., Zhang, Y., Zhao, Y., 2017. The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate. Int. J. Biol. Macromol. 96, 334e339. https://doi.org/10.1016/j.ijbiomac.2016.12.017.spa
dc.identifier.doi10.1016/j.jclepro.2019.117804
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol. 237 , No. 117804 (2019)spa
dc.relation.citationendpage10spa
dc.relation.citationissue117804 (2019)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume237spa
dc.relation.citesMeramo-Hurtado, S., Urbina-Suaréz, N. y González-Delgado, Á. (2019). Computer-aided environmental and exergy analyses of a large-scale production of chitosan microbeads modified with TiO2 nanoparticles. Journal of Cleaner Production, 237, Artículo 117804. https://doi.org/10.1016/j.jclepro.2019.117804
dc.relation.ispartofjournalJournal of Cleaner Productionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalEnvironmental assessmenteng
dc.subject.proposalExergy analysiseng
dc.subject.proposalProcess simulationeng
dc.subject.proposalChitosan microbeadseng
dc.subject.proposalNanoparticleseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record