Mostrar el registro sencillo del ítem

dc.contributor.authorZUORRO, Antonio
dc.contributor.authorGonzález-Delgado, Angel Darío
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorLavecchia, Roberto
dc.contributor.authorL’Abbate, Pasqua
dc.date.accessioned2021-10-30T16:45:44Z
dc.date.available2021-10-30T16:45:44Z
dc.date.issued2019-11-03
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/510
dc.description.abstractCorn husks are an important byproduct of the corn processing industry. Although they are a rich source of bioactive compounds, especially flavonoids, corn husks are usually disposed of or used as animal feed. In this paper, we investigate their recovery by an enzyme-assisted extraction process consisting of a pretreatment of the plant material with cellulase followed by solvent extraction with aqueous ethanol. A four-factor, three-level Box–Behnken design combined with the response surface methodology was used to optimize the enzyme dosage (0.3–0.5 g/100 g), incubation time (1.5–2.5 h), liquid-to-solid ratio (30–40 mL g^(-1) ) and ethanol concentration in the solvent (60–80% v/v). Under the optimal conditions, about 1.3 g of total flavonoids per 100 g of dry waste were recovered. A statistical analysis of the results was performed to provide a quantitative estimation of the influence of the four factors, alone or in combination, on the extraction yields. Overall, the results from this study indicate that corn husks are a valuable source of flavonoids and that they can be easily recovered by a sustainable and environmentally friendly extraction process.eng
dc.format.extent14 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherProcessesspa
dc.relation.ispartofProcesses ISSN: 2227-9717, 2019 vol:7 fasc: 804 págs: 1 - 14, DOI:10.3390/pr7110804
dc.rights2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).eng
dc.sourcehttps://www.mdpi.com/2227-9717/7/11/804spa
dc.titleOptimization of Enzyme-Assisted Extraction of Flavonoids from Corn Huskseng
dc.typeArtículo de revistaspa
dcterms.referencesShiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6: Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307.spa
dcterms.referencesLopez-Martinez, L.X.; Oliart-Ros, R.M.; Valerio-Alfaro, G.; Lee, C.H.; Parkin, K.L.; Garcia, H.S. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. Food Sci. Technol. 2009, 42, 1187–1192.spa
dcterms.referencesRamos-Escudero, F.; Muñoz, M.A.; Alvarado-Ortíz, C.; Alvarado, A.; Yáñe, J.A. Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. J. Med. Food 2012, 15, 206–215.spa
dcterms.referencesHasanudin, K.; Hashim, P.; Mustafa, S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules 2012, 17, 9697–9715.spa
dcterms.referencesLiu, J.; Wang, C.; Wang, Z.; Zhang, C.; Lu, S.; Liu, J. The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chem. 2011, 126, 261–269.spa
dcterms.referencesSarepoua, E.; Tangwongchai, T.; Suriharn, B.; Lertrat, K. Relationships between phytochemicals and antioxidant activity in corn silk. Int. Food Res. J. 2013, 20, 2073–2079.spa
dcterms.referencesReddy, N.; Yang, Y. Properties and potential applications of natural cellulose fibers from cornhusks. Green Chem. 2005, 7, 190–195.spa
dcterms.referencesBarl, B.; Biliaderis, C.G.; Murray, E.D.; Macgregor, A.W. Combined chemical and enzymic treatments of corn husk lignocellulosics. J. Sci. Food Agric. 1991, 56, 195–214.spa
dcterms.referencesYoon, K.Y.; Woodams, E.E.; Hang, Y.D. Enzymatic production of pentoses from the hemicellulose fraction of corn residues. LWT Food Sci. Technol. 2006, 39, 388–392.spa
dcterms.referencesHang, Y.D.; Woodams, E.E. Corn husks: A potential substrate for production of citric acid by Aspergillus niger. LWT Food Sci. Technol. 2000, 33, 520–521.spa
dcterms.referencesMahalaxmi, Y.; Sathish, T.; Chaganti, S.R.; Prakasham, R.S. Corn husk as a novel substrate for the production of rifamycin B by isolated Amycolatopsis sp. RSP 3 under SSF. Process. Biochem. 2010, 45, 47–53.spa
dcterms.referencesHuda, S.; Yang, Y. Chemically extracted cornhusk fibers as reinforcement in light-weight poly(propylene) composites. Macromol. Mater. Eng. 2008, 293, 235–243.spa
dcterms.referencesXiao, S.; Gao, R.; Gao, L.; Li, J. Poly(vinyl alcohol) films reinforced with nanofibrillated cellulose (NFC) isolated from corn husk by high intensity ultrasonication. Carbohydr. Polym. 2015, 136, 1027–1034.spa
dcterms.referencesLi, C.Y.; Kim, H.W.; Won, S.R.; Min, H.K.; Park, K.J.; Park, J.Y.; Ahn, M.S.; Rhee, H.I. Corn husk as a potential source of anthocyanins. J. Agric. Food Chem. 2008, 56, 11413–11416.spa
dcterms.referencesKhamphasan, P.; Lomthaisong, K.; Harakotr, B.; Ketthaisong, D.; Scott, M.P.; Lertrat, K.; Suriharn, B. Genotypic variation in anthocyanins, phenolic compounds, and antioxidant activity in cob and husk of purple field corn. Agronomy 2018, 8, 271.spa
dcterms.referencesVijayalaxmi, S.; Jayalakshmi, S.K.; Sreeramulu, K. Polyphenols from different agricultural residues: Extraction, identification and their antioxidant properties. J. Food Sci. Technol. 2015, 52, 2761–2769.spa
dcterms.referencesKupski, L.; Telles, A.C.; Gonçalves, L.M.; Nora, N.S.; Furlong, E.B. Recovery of functional compounds from lignocellulosic material: An innovative enzymatic approach. Food Biosci. 2018, 22, 26–31.spa
dcterms.referencesKhalid, M.; Saeed-ur-Rahman; Bilal, M.; Huang, D.-F. Role of flavonoids in plant interactions with the environment and against human pathogens—A review. J. Integr. Agric. 2019, 18, 211–230.spa
dcterms.references. Shashirekha, M.N.; Mallikarjuna, S.E.; Rajarathnam, S. Status of bioactive compounds in foods, with focus on fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 1324–1339.spa
dcterms.referencesLeong, H.Y.; Show, P.L.; Lim, M.H.; Ooi, C.W.; Ling, T.C. Natural red pigments from plants and their health benefits: A review. Food Rev. Int. 2018, 34, 463–482.spa
dcterms.referencesMojzer, E.B.; Hrnˇciˇc, M.K.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901.spa
dcterms.referencesRodríguez-García, C.; Sánchez-Quesada, C.; Gaforio, J.J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants 2019, 8, 137.spa
dcterms.referencesHrnˇciˇc, M.K.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop compounds: Extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects. Nutrients 2019, 11, 257.spa
dcterms.referencesLavecchia, R.; Medici, F.; Piga, L.; Zuorro, A. Factorial design analysis of the recovery of flavonoids from bilberry fruit by-products. Int. J. Appl. Eng. Res. 2015, 23, 43555–43559.spa
dcterms.referencesLavecchia, R.; Zuorro, A. Recovery of flavonoids from three-phase olive pomace by aqueous ethanol extraction. ARPN J. Eng. Appl. Sci. 2016, 11, 13802–13809.spa
dcterms.referencesKo, M.-J.; Kwon, H.-L.; Chung, M.-S. Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel. Innov. Food Sci. Emerg. Technol. 2016, 38, 175–181.spa
dcterms.referencesLiau, B.-C.; Ponnusamy, V.K.; Lee, M.-R.; Jong, T.-T.; Chen, J.-H. Development of pressurized hot water extraction for five flavonoid glycosides from defatted Camellia oleifera seeds (byproducts). Ind. Crop. Prod. 2017, 95, 296–304.spa
dcterms.referencesSharma, K.; Mahato, N.; Lee, Y.R. Extraction, characterization and biological activity of citrus flavonoids. Rev. Chem. Eng. 2019, 35, 265–284.spa
dcterms.referencesPuri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44.spa
dcterms.referencesKhorasani, E.A.; Mat, T.R.; Mohajer, S.; Banisalam, B. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). Biomed. Res. Int. 2015, 2015, 643285.spa
dcterms.referencesAgati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant. Sci. 2012, 196, 67–76.spa
dcterms.referencesZhao, S.; Baik, O.D.; Choi, Y.J.; Kim, S.M. Pretreatments for the efficient extraction of bioactive compounds from plant-based biomaterials. Crit. Rev. Food Sci. Nutr. 2014, 54, 1283–1297.spa
dcterms.referencesBaiano, A. Recovery of biomolecules from food wastes—A review. Molecules 2014, 19, 14821–14842.spa
dcterms.referencesGligor, O.; Mocan, A.; Moldovan, C.; Locatelli, M.; Cris, an, G.; Ferreira, I.C.F.R. Enzyme-assisted extractions of polyphenols—A comprehensive review. Trends Food Sci. Technol. 2019, 88, 302–315.spa
dcterms.referencesDoblin, M.S.; Pettolino, F.; Bacic, A. Plant cell walls: The skeleton of the plant world. Funct. Plant. Biol. 2010, 37, 357–381.spa
dcterms.referencesScheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant. Biol. 2008, 61, 263–289.spa
dcterms.referencesKuhad, R.C.; Gupta, R.; Singh, A. Microbial cellulases and their industrial applications. Enzyme Res. 2011, 1, 280696.spa
dcterms.referencesLavecchia, R.; Zuorro, A. Cellulase Applications in Pigment and Bioactive Compound Extraction. In New and Future Developments in Microbial Biotechnology and Bioengineering; Gupta, V.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 209–222.spa
dcterms.referencesMeini, M.-R.; Cabezudo, I.; Boschetti, C.E.; Romanini, D. Recovery of phenolic antioxidants from Syrah grape pomace through the optimization of an enzymatic extraction process. Food Chem. 2019, 283, 257–264.spa
dcterms.referencesChen, S.; Xing, X.H.; Huang, J.J.; Xu, M.S. Enzyme-assisted extraction of flavonoids from Ginkgo biloba leaves: Improvement effect of flavonol transglycosylation catalyzed by Penicillium decumbens cellulase. Enzyme Microb. Technol. 2011, 48, 100–105.spa
dcterms.referencesWang, Y.; Zu, Y.; Long, J.; Fu, Y.; Li, S.; Zhang, D.; Li, J.; Wink, M.; Efferth, T. Enzymatic water extraction of taxifolin from wood sawdust of Larix gmelini (Rupr.) Rupr. and evaluation of its antioxidant activity. Food Chem. 2011, 126, 1178–1185.spa
dcterms.referencesHuang, D.; Zhou, X.; Si, J.; Gong, X.; Wang, S. Studies on cellulase-ultrasonic assisted extraction technology for flavonoids from Illicium verum residues. Chem. Cent. J. 2016, 10, 56.spa
dcterms.referencesNema, N.; Alamir, L.; Mohammad, M. Production of cellulase from Bacillus cereus by submerged fermentation using corn husks as substrates. Int. Food Res. J. 2015, 22, 1831–1836.spa
dcterms.referencesYilmaz, N.D.; Sulak, M.; Yilmaz, K.; Kalin, F. Physical and chemical properties of water-retted fibers extracted from different locations in corn husks. J. Nat. Fibers 2016, 13, 397–409.spa
dcterms.referencesZuorro, A.; Lavecchia, R.; Medici, F.; Piga, L. Use of cell wall degrading enzymes for the production of high-quality functional products from tomato processing waste. Chem. Eng. Trans. 2014, 38, 355–360.spa
dcterms.referencesZuorro, A.; Maffei, G.; Lavecchia, R. Optimization of enzyme-assisted lipid extraction from Nannochloropsis microalgae. J. Taiwan Inst. Chem. Eng. 2016, 67, 106–114.spa
dcterms.referencesDonohoe, B.S.; Resch, M.G. Mechanisms employed by cellulase systems to gain access through the complex architecture of lignocellulosic substrates. Curr. Opin. Chem. Biol. 2015, 29, 100–107.spa
dcterms.referencesLu, X.; Zheng, X.; Li, X.; Zhao, J. Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water. Biotechnol. Biofuels 2016, 9, 118.spa
dcterms.referencesSiqueira, G.; Arantes, V.; Saddler, J.N.; Ferraz, A.; Milagres, A.M.F. Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnol. Biofuels 2017, 10, 176.spa
dcterms.referencesVermaas, J.V.; Petridis, L.; Qi, X.; Schulz, R.; Lindner, B.; Smith, J.C. Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol. Biofuels 2015, 8, 217.spa
dcterms.referencesRahikainen, J.; Mikander, S.; Marjamaa, K.; Tamminen, T.; Lappas, A.; Viikari, L.; Kruus, K. Inhibition of enzymatic hydrolysis by residual lignins from softwood-study of enzyme binding and inactivation on lignin-rich surface. Biotechnol. Bioeng. 2011, 108, 2823–2834.spa
dcterms.referencesDos Santos, A.C.; Ximenes, E.; Kim, Y.; Ladisch, M.R. Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol. 2019, 37, 518–531.spa
dcterms.referencesRahikainen, J.L.; Evans, J.D.; Mikander, S.; Kalliola, A.; Puranen, T.; Tamminen, T.; Marjamaa, K.; Kruus, K. Cellulase-lignin interactions—The role of carbohydrate-binding module and pH in non-productive binding. Enzyme Microb. Technol. 2013, 53, 315–321.spa
dcterms.references. Zuorro, A.; Lavecchia, R. Polyphenols and energy recovery from spent coffee grounds. Chem. Eng. Trans. 2011, 25, 285–290.spa
dcterms.referencesDorta, E.; Lobo, M.G.; Gonzalez, M. Reutilization of mango byproducts: Study of the effect of extraction solvent and temperature on their antioxidant properties. J. Food Sci. 2012, 77, C80–C88.spa
dcterms.referencesZuorro, A.; Iannone, A.; Lavecchia, R. Water–organic solvent extraction of phenolic antioxidants from brewers’ spent grain. Processes 2019, 7, 126.spa
dcterms.referencesFidaleo, M.; Lavecchia, R.; Zuorro, A. Extraction of bioactive polyphenols with high antioxidant activity from bilberry (Vaccinium myrtillus L.) processing waste. Orient. J. Chem. 2016, 32, 759–767.spa
dcterms.referencesZuorro, A.; Maffei, G.; Lavecchia, R. Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. J. Clean. Prod. 2016, 111, 279–284.spa
dcterms.referencesSun, R.C.; Sun, X.F.; Wang, S.Q.; Zhu, W.; Wang, X.Y. Ester and ether linkages between hydroxycinnamic acids and lignin from wheat, rice rye, and barley straws, maize stems, and fast-growing poplar wood. Ind. Crop. Prod. 2002, 15, 179–188.spa
dcterms.referencesDamoderan, S. Protein: Danaturation. In Handbook of Food Science, Technology and Engineering; Hui, Y.K., Ed.; CRC Press: Boca Raton, FL, USA, 2005.spa
dcterms.referencesObataya, E.; Gril, J. Swelling of acetylated wood I: Swelling in organic liquids. J. Wood Sci. 2005, 51, 124–129.spa
dcterms.referencesEl Seoud, O.A. Understanding solvation. Pure Appl. Chem. 2009, 81, 697–707.spa
dcterms.referencesFidale, L.C.; Ruiz, N.; Heinze, T.; El Seoud, O.A. Cellulose swelling by aprotic and protic solvents: What are the similarities and differences? Macromol. Chem. Phys. 2008, 209, 1240–1254.spa
dcterms.referencesKachrimanidou, V.; Kopsahelis, N.; Chatzifragkou, A.; Papanikolaou, S.; Yanniotis, S.; Kookos, I.; Koutinas, A.A. Utilisation of by-products from sunflower-based biodiesel production processes for the production of fermentation feedstock. Waste Biomass Valoriz. 2013, 4, 529–537.spa
dcterms.referencesPapadaki, A.; Androutsopoulos, N.; Patsalou, M.; Koutinas, M.; Kopsahelis, N.; de Castro, A.M.; Papanikolaou, S.; Koutinas, A.A. Biotechnological production of fumaric acid: The effect of morphology of Rhizopus arrhizus NRRL 2582. Fermentation 2017, 3, 33.spa
dcterms.referencesKachrimanidou, V.; Kopsahelis, N.; Vlysidis, A.; Papanikolaou, S.; Kookos, I.K.; Monje Martínez, B.; Escrig Rondán, M.C.; Koutinas, A.A. Downstream separation of poly(hydroxyalkanoates) using crude enzyme consortia produced via solid state fermentation integrated in a biorefinery concept. Food Bioprod. Process. 2016, 100, 323–334.spa
dcterms.referencesPapadaki, A.; Kachrimanidou, V.; Papanikolaou, S.; Philippoussis, A.; Diamantopoulou, P. Upgrading grape pomace through Pleurotus spp. cultivation for the production of enzymes and fruiting bodies. Microorganisms 2019, 7, 207.spa
dcterms.referencesPapadaki, A.; Kopsahelis, N.; Mallouchos, A.; Mandala, I.; Koutinas, A.A. Bioprocess development for the production of novel oleogels from soybean and microbial oils. Food Res. Int. 2019, 126, 108684.spa
dc.identifier.doi10.3390/pr7110804
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol. 7, No. 11 (2019)spa
dc.relation.citationendpage14spa
dc.relation.citationissue11 (2019)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume7spa
dc.relation.citesZuorro, Lavecchia, González-Delgado, García-Martinez y L’Abbate. (2019). Optimization of enzyme-assisted extraction of flavonoids from corn husks. Processes, 7(11), 1–14. https://doi.org/10.3390/pr7110804
dc.relation.ispartofjournalProcessesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalflavonoidseng
dc.subject.proposalcorn huskseng
dc.subject.proposalcellulaseeng
dc.subject.proposalEnzyme-assisted extractioneng
dc.subject.proposalWaste valorizationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem