Mostrar el registro sencillo del ítem


Efecto de la relación carbono/Nitrógeno en la producción de carotenoids en microalgas

dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorGuarin, Esthefania
dc.contributor.authorRemolina, Linda
dc.contributor.authorBermúdez, Johanna
dc.contributor.authorMogollón Londoño, Sandra Oriana
dc.contributor.authorContreras Ropero, Jefferson Eduardo
dc.contributor.authorGarcía-Martinez, Janet
dc.date.accessioned2021-10-29T20:54:29Z
dc.date.available2021-10-29T20:54:29Z
dc.date.issued2020-01-03
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/487
dc.description.abstractThis study investigates the effect of C/N ratio on the production of biomass and total carotenoids on a Scenedesmus sp. Initially, three different carbon sources (sodium carbonate, sodium bicarbonate and sodium acetate) were tested under different concentrations of a nitrogen source (sodium nitrate) in 250 mL tubular air-lift reactors. The reactors were operated at 25 °C for 40 days. in light:dark cycle of 12:12, under a continuous flow of air. Results showed that by the adjustment of the concentration of the carbon and nitrogen source, it is possible to increase the concentration of biomass up to 0.8 g/L. However, by the regulation on the concentration of sodium carbonate and sodium nitrate, the final content of total carotenoids was increased two times (from 0.3 to 0.66 % w/w). Results from this study shows that an specific ratio between the carbon source employed and the concentration of the nitrogen source shows that an outstanding increase on the final biomass and the concentration of total carotenoids that can be produced. Finally, the effect of well-known strategies such as light, salinity and pH, coupled with C/N ratio must be studied to achieve a proper method to stress the cell culture and enhance the synthesis of carotenoids in Scenedesmus sp.eng
dc.description.abstractEl presente trabajo de investigación tiene como objetivo determiner el efecto de la relación Carbono/Nitrógeno en la producción de biomasa y carotenoides totales en una cepa de Scenedesmus sp. Inicialmente, se evaluaron tres fuentes de carbono diferentes (carbonato de sodio, bicarbonato de sodio y acetato de sodio) bajo diferentes concentraciones de una fuente de nitrógeno (nitrato de sodio) en reactores tubulares de 250 ml. Los reactores fueron operados a 25°C durante 40 días en un ciclo de luz:oscuridad de 12:12 horas y un flujo continuo de aire. De acuerdo con los resultados se encontró que mediante el ajuste de la concentración de la fuente de carbono y nitrógeno, es posible aumentar la concentración de biomasa hasta 0.8 g/L. Por otra parte, mediante la regulación de la concentración de carbonato de sodio y nitrato de sodio, el contenido final carotenoides totales se incrementó dos veces (de 0.3 a 0.66% p/p). Los resultados de este estudio muestran que, al ajustar las concentraciones de la fuente de carbono y de nitrógeno es posible obtener un aumento interesante en la biomasa final y la concentración de carotenoides totales. Finalmente, es importante resaltar que se debe estudiar el efecto de otras estrategias como la luz, la salinidad y el pH, junto con la relación C/N para obtener un método adecuado que lleve a las celulas hacia un estress metabolico y mejore así la síntesis de carotenoides en Scencedesmus sp.spa
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista Ingeniería Y Competitividadspa
dc.relation.ispartofRevista Ingeniería Y Competitividad ISSN: 2027-8284, 2020 vol:22 fasc: 1 págs: 1 - 12, DOI:10.25100/iyc.v22i1.8686
dc.rightsEste trabajo está licenciado bajo una Licencia Internacional Creative Commons Reconocimiento– NoComercial–CompartirIgual 4.0spa
dc.sourcehttps://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/8811spa
dc.titleEffect of de Carbon/Nitrogen ratio on the production of microalgae-based carotenoidseng
dc.titleEfecto de la relación carbono/Nitrógeno en la producción de carotenoids en microalgasspa
dc.typeArtículo de revistaspa
dcterms.referencesCiccone MM, Cortese F, Gesualdo M, Carbonara S, Zito A, Ricci G, et al. Dietary Intake of Carotenoids and Their Antioxidant and Anti-Inflammatory Effects in Cardiovascular Care. Mediators Inflamm. 2013;2013:1–11. Doi: 10.1155/2013/782137.spa
dcterms.referencesDel Campo JA, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol. 2007;74(6):1163– 74. Doi: 10.1007/s00253-007-0844-9.spa
dcterms.referencesD’Alessandro EB, Filho NRA. Concepts and studies on lipid and pigments of microalgae: A review. Renew Sustain Energy Rev. 2016;58:832–41. Doi: 10.1016/j.rser.2015.12.162.spa
dcterms.referencesHu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol adv. 2018;36(1), 54– 67. Doi: 10.1016/j.biotechadv.2017.09.009.spa
dcterms.referencesDel Campo JA, Moreno J, Rodrı́guez H, Vargas MA, Rivas J, Guerrero MG. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol. 2000;76(1):51–9. Doi: 10.1016/S0168- 1656(99)00178-9.spa
dcterms.referencesSánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J, Molina E. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 2008;43(4):398–405. Doi: 10.1016/j.procbio.2008.01.004.spa
dcterms.referencesDel Campo JA, Rodrı́guez H, Moreno J, Vargas MA, Rivas J, Guerrero MG. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol. 2004;64(6):848–854. Doi: 10.1007/s00253-003-1510-5.spa
dcterms.referencesShi X-M, Zhang X-W, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol. 2000;27(3–5):312–8. Doi: 10.1016/S0141-0229(00)00208-8.spa
dcterms.referencesChen C-Y, Jesisca, Hsieh C, Lee D-J, Chang C-H, Chang J-S. Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresour Technol. 2016;200:500–5. Doi: 10.1016/j.biortech.2015.10.071.spa
dcterms.referencesChen J-H, Chen C-Y, Hasunuma T, Kondo A, Chang C-H, Ng I-S, et al. Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. Bioresour Technol. 2019;278:17–25. Doi: 10.1016/j.biortech.2019.01.041.spa
dcterms.referencesCasal C, Cuaresma M, Vega JM, Vilchez C. Enhanced Productivity of a LuteinEnriched Novel Acidophile Microalga Grown on Urea. Mar Drugs. 2011;9(1):29–42. Doi: 10.3390/md9010029.spa
dcterms.referencesGarcía-González M, Moreno J, Cañavate JP, Anguis V, Prieto A, Manzano C, et al. Conditions for open-air outdoor culture of Dunaliella salina in southern Spain. J Appl Phycol. 2003;15(2– 3):177–184. Doi: 10.1023/a:1023892520443.spa
dcterms.referencesLeón R, Martín M, Vigara J, Vilchez C, Vega JM. Microalgae mediated photoproduction of β-carotene in aqueous–organic two phase systems. Biomol Eng. 2003;20(4–6):177–82. Doi: 10.1016/S1389-0344(03)00048-0.spa
dcterms.referencesGómez PI, Inostroza I, Pizarro M, Pérez J. From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. AoB Plants. 2013;5(plt026). Doi: 10.1093/aobpla/plt026.spa
dcterms.referencesSolovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol. 2008;20(3):245–251. Doi: 10.1007/s10811-007-9233-0.spa
dcterms.referencesJerez–Mogollón SJ, Rueda-Quiñonez LV, Alfonso–Velazco LY, Barajas– Solano AF, Barajas–Ferreira C, Kafarov V. Improvement of lab-scale production of microalgal carbohydrates for biofuel production. CT&F - Ciencia, Tecnol y Futur. 2012;5(1):103–16.spa
dcterms.referencesLin C., Lay C. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrogen Energy. 2004;29(1):41–5. Doi: 10.1016/s0360-3199(03)00083-1.spa
dcterms.referencesBarajas–Solano AF, Guzman-Monsalve A, Kafarov V. Effect of Carbon– Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccocus braunii UIS 003. Chem Eng Trans. 2016;49:247–52. Doi: 10.3303/CET1649042.spa
dcterms.referencesEstévez-Landazábal L-L, Barajas– Solano AF, Barajas–Ferreira C, Kafarov V. Improvement of lipid productivity on Chlorella vulgaris using waste glycerol and sodium acetate. CT&F - Ciencia, Tecnol y Futur. 2013;5(2):113–26.spa
dcterms.referencesAndersen RA, editor. Recipes for Freshwater and Seawater Media. In: Algal Culturing Techniques. 1st ed. Elsevier Academic Press; 2005. p. 429– 538.spa
dcterms.referencesTIBCO StatisticaTM. TIBCO Software Inc; 2004. Available from: https://www.tibco.com/sites/tibco/files/r esources/ds-statistica-tech-brief-bigdata-analytics-final.pdf.spa
dcterms.referencesMoheimani NR, Borowitzka MA, Isdepsky A, Sing SF. Standard Methods for Measuring Growth of Algae and Their Composition. Algae for Biofuels and Energy. 2013;5:265–84. Doi: 10.1007/978-94-007-5479-9_16.spa
dcterms.referencesPřibyl P, Pilný J, Cepák V, Kaštánek P. The role of light and nitrogen in growth and carotenoid accumulation in Scenedesmus sp. Algal Res. 2016;16:69– 75. Doi: 10.1016/j.algal.2016.02.028.spa
dcterms.referencesGonzález-Delgado ÁD, Barajas–Solano AF, Ardila-Álvarez AM. Biomass and protein production of Chlorella vulgaris Beyerinck (Chlorellales: Chlorellaceae) via the design of selective culture media. Cienc y Tecnol Agropecu. 2017;18(3):451–61. Doi: 10.21930/rcta.vol18_num3_art:736.spa
dcterms.referencesBhosale P. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol. 2004;63(4):351– 361. Doi: 10.1007/s00253-003-1441-1.spa
dcterms.referencesPirastru L, Darwish M, Chu FL, Perreault F, Sirois L, Sleno L, et al. Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment. J Appl Phycol. 2012;24(1):117–124. Doi: 10.1007/s10811-011-9657-4.spa
dcterms.referencesBishop NI. The β,ϵ-carotenoid, lutein, is specifically required for the formation of the oligomeric forms of the light harvesting complex in the green alga, Scenedesmus obliquus. J Photochem Photobiol B Biol. 1996;36(3):279–83. Doi: 10.1016/S1011-1344(96)07381-2.spa
dcterms.referencesSong M, Pei H. The growth and lipid accumulation of Scenedesmus quadricauda during batch mixotrophic/heterotrophic cultivation using xylose as a carbon source. Bioresour technol. 2018;263:525–531. Doi: 10.1016/j.biortech.2018.05.020.spa
dcterms.referencesMinhas AK, Hodgson P, Barrow CJ, Sashidhar B, Adholeya A. The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential. Bioresour Technol. 2016;211:556–65. Doi: 10.1016/j.biortech.2016.03.121.spa
dcterms.referencesQin S, Liu G-X, Hu Z-Y. The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem. 2008;43(8):795–802. Doi: 10.1016/j.procbio.2008.03.010.spa
dcterms.referencesKozlova TA, Hardy BP, Krishna P, Levin DB. Effect of phytohormones on growth and accumulation of pigments and fatty acids in the microalgae Scenedesmus quadricauda. Algal Res. 2017;27:325–34. Doi: 10.1016/j.algal.2017.09.020.spa
dcterms.referencesPatil L, Kaliwal B. Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP07. Appl Biochem Biotechnol. 2017;182(1):335–348. Doi: 10.1007/s12010-016-2330-2.spa
dcterms.referencesPřibyl P, Cepák V, Kaštánek P, Zachleder V. Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res. 2015;11:22– 7. Doi: 10.1016/j.algal.2015.05.020.spa
dcterms.referencesAnusree V, Sujitha B, Anand J, Arumugam M. Dissolved inorganic carbonate sustain the growth, lipid and biomass yield of Scenedesmus quadricauda under nitrogen starved condition. Indian J Exp Biol. 2017;55(10):702–10. Available from: http://nopr.niscair.res.in/handle/1234567 89/42843.spa
dcterms.referencesHo SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, et al. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using lightrelated strategies. Bioresour Technol. 2014;152:275–82. Doi: 10.1016/j.biortech.2013.11.031.spa
dc.identifier.doi10.25100/iyc.v22i1.8686
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol. 22 No. 1 (2020)spa
dc.relation.citationendpage12spa
dc.relation.citationissue1 (2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume22spa
dc.relation.citesE. Guarin-Villegas, «Efecto de la relación carbono/Nitrógeno en la producción de carotenoids en microalgas», inycomp, vol. 22, n.º 1, pp. 1-13, ene. 2020.
dc.relation.ispartofjournalRevista Ingeniería Y Competitividadspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalBiomass productioneng
dc.subject.proposalPhotobioreactoreng
dc.subject.proposalScenedesmus speng
dc.subject.proposalSodium carbonateeng
dc.subject.proposalSodium nitrateeng
dc.subject.proposalCarbonato de sodiospa
dc.subject.proposalFotobioreactorspa
dc.subject.proposalNitrato de sodiospa
dc.subject.proposalProducción de biomasaspa
dc.subject.proposalScenedesmus spspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem