Effect of de Carbon/Nitrogen ratio on the production of microalgae-based carotenoids
Efecto de la relación carbono/Nitrógeno en la producción de carotenoids en microalgas
dc.contributor.author | Barajas Solano, andres F | |
dc.contributor.author | Guarin, Esthefania | |
dc.contributor.author | Remolina, Linda | |
dc.contributor.author | Bermúdez, Johanna | |
dc.contributor.author | Mogollón Londoño, Sandra Oriana | |
dc.contributor.author | Contreras Ropero, Jefferson Eduardo | |
dc.contributor.author | García-Martinez, Janet | |
dc.date.accessioned | 2021-10-29T20:54:29Z | |
dc.date.available | 2021-10-29T20:54:29Z | |
dc.date.issued | 2020-01-03 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/487 | |
dc.description.abstract | This study investigates the effect of C/N ratio on the production of biomass and total carotenoids on a Scenedesmus sp. Initially, three different carbon sources (sodium carbonate, sodium bicarbonate and sodium acetate) were tested under different concentrations of a nitrogen source (sodium nitrate) in 250 mL tubular air-lift reactors. The reactors were operated at 25 °C for 40 days. in light:dark cycle of 12:12, under a continuous flow of air. Results showed that by the adjustment of the concentration of the carbon and nitrogen source, it is possible to increase the concentration of biomass up to 0.8 g/L. However, by the regulation on the concentration of sodium carbonate and sodium nitrate, the final content of total carotenoids was increased two times (from 0.3 to 0.66 % w/w). Results from this study shows that an specific ratio between the carbon source employed and the concentration of the nitrogen source shows that an outstanding increase on the final biomass and the concentration of total carotenoids that can be produced. Finally, the effect of well-known strategies such as light, salinity and pH, coupled with C/N ratio must be studied to achieve a proper method to stress the cell culture and enhance the synthesis of carotenoids in Scenedesmus sp. | eng |
dc.description.abstract | El presente trabajo de investigación tiene como objetivo determiner el efecto de la relación Carbono/Nitrógeno en la producción de biomasa y carotenoides totales en una cepa de Scenedesmus sp. Inicialmente, se evaluaron tres fuentes de carbono diferentes (carbonato de sodio, bicarbonato de sodio y acetato de sodio) bajo diferentes concentraciones de una fuente de nitrógeno (nitrato de sodio) en reactores tubulares de 250 ml. Los reactores fueron operados a 25°C durante 40 días en un ciclo de luz:oscuridad de 12:12 horas y un flujo continuo de aire. De acuerdo con los resultados se encontró que mediante el ajuste de la concentración de la fuente de carbono y nitrógeno, es posible aumentar la concentración de biomasa hasta 0.8 g/L. Por otra parte, mediante la regulación de la concentración de carbonato de sodio y nitrato de sodio, el contenido final carotenoides totales se incrementó dos veces (de 0.3 a 0.66% p/p). Los resultados de este estudio muestran que, al ajustar las concentraciones de la fuente de carbono y de nitrógeno es posible obtener un aumento interesante en la biomasa final y la concentración de carotenoides totales. Finalmente, es importante resaltar que se debe estudiar el efecto de otras estrategias como la luz, la salinidad y el pH, junto con la relación C/N para obtener un método adecuado que lleve a las celulas hacia un estress metabolico y mejore así la síntesis de carotenoides en Scencedesmus sp. | spa |
dc.format.extent | 12 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Revista Ingeniería Y Competitividad | spa |
dc.relation.ispartof | Revista Ingeniería Y Competitividad ISSN: 2027-8284, 2020 vol:22 fasc: 1 págs: 1 - 12, DOI:10.25100/iyc.v22i1.8686 | |
dc.rights | Este trabajo está licenciado bajo una Licencia Internacional Creative Commons Reconocimiento– NoComercial–CompartirIgual 4.0 | spa |
dc.source | https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/8811 | spa |
dc.title | Effect of de Carbon/Nitrogen ratio on the production of microalgae-based carotenoids | eng |
dc.title | Efecto de la relación carbono/Nitrógeno en la producción de carotenoids en microalgas | spa |
dc.type | Artículo de revista | spa |
dcterms.references | Ciccone MM, Cortese F, Gesualdo M, Carbonara S, Zito A, Ricci G, et al. Dietary Intake of Carotenoids and Their Antioxidant and Anti-Inflammatory Effects in Cardiovascular Care. Mediators Inflamm. 2013;2013:1–11. Doi: 10.1155/2013/782137. | spa |
dcterms.references | Del Campo JA, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol. 2007;74(6):1163– 74. Doi: 10.1007/s00253-007-0844-9. | spa |
dcterms.references | D’Alessandro EB, Filho NRA. Concepts and studies on lipid and pigments of microalgae: A review. Renew Sustain Energy Rev. 2016;58:832–41. Doi: 10.1016/j.rser.2015.12.162. | spa |
dcterms.references | Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol adv. 2018;36(1), 54– 67. Doi: 10.1016/j.biotechadv.2017.09.009. | spa |
dcterms.references | Del Campo JA, Moreno J, Rodrı́guez H, Vargas MA, Rivas J, Guerrero MG. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol. 2000;76(1):51–9. Doi: 10.1016/S0168- 1656(99)00178-9. | spa |
dcterms.references | Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J, Molina E. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 2008;43(4):398–405. Doi: 10.1016/j.procbio.2008.01.004. | spa |
dcterms.references | Del Campo JA, Rodrı́guez H, Moreno J, Vargas MA, Rivas J, Guerrero MG. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol. 2004;64(6):848–854. Doi: 10.1007/s00253-003-1510-5. | spa |
dcterms.references | Shi X-M, Zhang X-W, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol. 2000;27(3–5):312–8. Doi: 10.1016/S0141-0229(00)00208-8. | spa |
dcterms.references | Chen C-Y, Jesisca, Hsieh C, Lee D-J, Chang C-H, Chang J-S. Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresour Technol. 2016;200:500–5. Doi: 10.1016/j.biortech.2015.10.071. | spa |
dcterms.references | Chen J-H, Chen C-Y, Hasunuma T, Kondo A, Chang C-H, Ng I-S, et al. Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. Bioresour Technol. 2019;278:17–25. Doi: 10.1016/j.biortech.2019.01.041. | spa |
dcterms.references | Casal C, Cuaresma M, Vega JM, Vilchez C. Enhanced Productivity of a LuteinEnriched Novel Acidophile Microalga Grown on Urea. Mar Drugs. 2011;9(1):29–42. Doi: 10.3390/md9010029. | spa |
dcterms.references | García-González M, Moreno J, Cañavate JP, Anguis V, Prieto A, Manzano C, et al. Conditions for open-air outdoor culture of Dunaliella salina in southern Spain. J Appl Phycol. 2003;15(2– 3):177–184. Doi: 10.1023/a:1023892520443. | spa |
dcterms.references | León R, Martín M, Vigara J, Vilchez C, Vega JM. Microalgae mediated photoproduction of β-carotene in aqueous–organic two phase systems. Biomol Eng. 2003;20(4–6):177–82. Doi: 10.1016/S1389-0344(03)00048-0. | spa |
dcterms.references | Gómez PI, Inostroza I, Pizarro M, Pérez J. From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. AoB Plants. 2013;5(plt026). Doi: 10.1093/aobpla/plt026. | spa |
dcterms.references | Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol. 2008;20(3):245–251. Doi: 10.1007/s10811-007-9233-0. | spa |
dcterms.references | Jerez–Mogollón SJ, Rueda-Quiñonez LV, Alfonso–Velazco LY, Barajas– Solano AF, Barajas–Ferreira C, Kafarov V. Improvement of lab-scale production of microalgal carbohydrates for biofuel production. CT&F - Ciencia, Tecnol y Futur. 2012;5(1):103–16. | spa |
dcterms.references | Lin C., Lay C. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrogen Energy. 2004;29(1):41–5. Doi: 10.1016/s0360-3199(03)00083-1. | spa |
dcterms.references | Barajas–Solano AF, Guzman-Monsalve A, Kafarov V. Effect of Carbon– Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccocus braunii UIS 003. Chem Eng Trans. 2016;49:247–52. Doi: 10.3303/CET1649042. | spa |
dcterms.references | Estévez-Landazábal L-L, Barajas– Solano AF, Barajas–Ferreira C, Kafarov V. Improvement of lipid productivity on Chlorella vulgaris using waste glycerol and sodium acetate. CT&F - Ciencia, Tecnol y Futur. 2013;5(2):113–26. | spa |
dcterms.references | Andersen RA, editor. Recipes for Freshwater and Seawater Media. In: Algal Culturing Techniques. 1st ed. Elsevier Academic Press; 2005. p. 429– 538. | spa |
dcterms.references | TIBCO StatisticaTM. TIBCO Software Inc; 2004. Available from: https://www.tibco.com/sites/tibco/files/r esources/ds-statistica-tech-brief-bigdata-analytics-final.pdf. | spa |
dcterms.references | Moheimani NR, Borowitzka MA, Isdepsky A, Sing SF. Standard Methods for Measuring Growth of Algae and Their Composition. Algae for Biofuels and Energy. 2013;5:265–84. Doi: 10.1007/978-94-007-5479-9_16. | spa |
dcterms.references | Přibyl P, Pilný J, Cepák V, Kaštánek P. The role of light and nitrogen in growth and carotenoid accumulation in Scenedesmus sp. Algal Res. 2016;16:69– 75. Doi: 10.1016/j.algal.2016.02.028. | spa |
dcterms.references | González-Delgado ÁD, Barajas–Solano AF, Ardila-Álvarez AM. Biomass and protein production of Chlorella vulgaris Beyerinck (Chlorellales: Chlorellaceae) via the design of selective culture media. Cienc y Tecnol Agropecu. 2017;18(3):451–61. Doi: 10.21930/rcta.vol18_num3_art:736. | spa |
dcterms.references | Bhosale P. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol. 2004;63(4):351– 361. Doi: 10.1007/s00253-003-1441-1. | spa |
dcterms.references | Pirastru L, Darwish M, Chu FL, Perreault F, Sirois L, Sleno L, et al. Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment. J Appl Phycol. 2012;24(1):117–124. Doi: 10.1007/s10811-011-9657-4. | spa |
dcterms.references | Bishop NI. The β,ϵ-carotenoid, lutein, is specifically required for the formation of the oligomeric forms of the light harvesting complex in the green alga, Scenedesmus obliquus. J Photochem Photobiol B Biol. 1996;36(3):279–83. Doi: 10.1016/S1011-1344(96)07381-2. | spa |
dcterms.references | Song M, Pei H. The growth and lipid accumulation of Scenedesmus quadricauda during batch mixotrophic/heterotrophic cultivation using xylose as a carbon source. Bioresour technol. 2018;263:525–531. Doi: 10.1016/j.biortech.2018.05.020. | spa |
dcterms.references | Minhas AK, Hodgson P, Barrow CJ, Sashidhar B, Adholeya A. The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential. Bioresour Technol. 2016;211:556–65. Doi: 10.1016/j.biortech.2016.03.121. | spa |
dcterms.references | Qin S, Liu G-X, Hu Z-Y. The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem. 2008;43(8):795–802. Doi: 10.1016/j.procbio.2008.03.010. | spa |
dcterms.references | Kozlova TA, Hardy BP, Krishna P, Levin DB. Effect of phytohormones on growth and accumulation of pigments and fatty acids in the microalgae Scenedesmus quadricauda. Algal Res. 2017;27:325–34. Doi: 10.1016/j.algal.2017.09.020. | spa |
dcterms.references | Patil L, Kaliwal B. Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP07. Appl Biochem Biotechnol. 2017;182(1):335–348. Doi: 10.1007/s12010-016-2330-2. | spa |
dcterms.references | Přibyl P, Cepák V, Kaštánek P, Zachleder V. Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res. 2015;11:22– 7. Doi: 10.1016/j.algal.2015.05.020. | spa |
dcterms.references | Anusree V, Sujitha B, Anand J, Arumugam M. Dissolved inorganic carbonate sustain the growth, lipid and biomass yield of Scenedesmus quadricauda under nitrogen starved condition. Indian J Exp Biol. 2017;55(10):702–10. Available from: http://nopr.niscair.res.in/handle/1234567 89/42843. | spa |
dcterms.references | Ho SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, et al. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using lightrelated strategies. Bioresour Technol. 2014;152:275–82. Doi: 10.1016/j.biortech.2013.11.031. | spa |
dc.identifier.doi | 10.25100/iyc.v22i1.8686 | |
dc.publisher.place | Colombia | spa |
dc.relation.citationedition | Vol. 22 No. 1 (2020) | spa |
dc.relation.citationendpage | 12 | spa |
dc.relation.citationissue | 1 (2020) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 22 | spa |
dc.relation.cites | E. Guarin-Villegas, «Efecto de la relación carbono/Nitrógeno en la producción de carotenoids en microalgas», inycomp, vol. 22, n.º 1, pp. 1-13, ene. 2020. | |
dc.relation.ispartofjournal | Revista Ingeniería Y Competitividad | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.proposal | Biomass production | eng |
dc.subject.proposal | Photobioreactor | eng |
dc.subject.proposal | Scenedesmus sp | eng |
dc.subject.proposal | Sodium carbonate | eng |
dc.subject.proposal | Sodium nitrate | eng |
dc.subject.proposal | Carbonato de sodio | spa |
dc.subject.proposal | Fotobioreactor | spa |
dc.subject.proposal | Nitrato de sodio | spa |
dc.subject.proposal | Producción de biomasa | spa |
dc.subject.proposal | Scenedesmus sp | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Files in this item
This item appears in the following Collection(s)
-
Ambiente y Vida - GIAV [124]